活性炭与Fenton反应在有机污染物降解中的协同作用:迄今为止被忽视的动态单原子位点的作用。

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Xiaoping Li, Meng Liu, Lanxuan Wen, Rongwei Li, Yu Liu, Shengjiong Yang*, Dahu Ding, Yang Chen, Rongzhi Chen* and Shengming Xu*, 
{"title":"活性炭与Fenton反应在有机污染物降解中的协同作用:迄今为止被忽视的动态单原子位点的作用。","authors":"Xiaoping Li,&nbsp;Meng Liu,&nbsp;Lanxuan Wen,&nbsp;Rongwei Li,&nbsp;Yu Liu,&nbsp;Shengjiong Yang*,&nbsp;Dahu Ding,&nbsp;Yang Chen,&nbsp;Rongzhi Chen* and Shengming Xu*,&nbsp;","doi":"10.1021/acs.est.5c01201","DOIUrl":null,"url":null,"abstract":"<p >Fenton process and activated carbon are widely used for water treatment, yet both encounter significant challenges, such as slow Fe<sup>3+</sup>/Fe<sup>2+</sup> conversion and rapid adsorbent saturation. Herein, a category of hitherto overlooked dynamic single-atom sites on heteroatom-doped carbons (HDCs) that mitigate the above problems was observed by coupling Fenton and activated carbon. Specifically, the defects on the carbon surface, particularly the heteroatom defects, coordinated with Fe<sup>3+</sup> in the bulk solution to form dynamic single-atom sites that simultaneously suppress the Fe<sup>3+</sup> hydrolysis and promote the Fe<sup>3+</sup>/Fe<sup>2+</sup> conversion. This synergy sustains the efficient oxidation process of the coupled system through up to 5 cycles due to the optimized Fe<sup>3+</sup>/Fe<sup>2+</sup> cycling. Moreover, dynamic single-atom sites enable the continuous removal of adsorbates from the carbon surface, extending the time before adsorption saturation and maintaining nearly 100% efficiency for 480 h. Mechanistic analysis revealed that dynamic single-atom sites optimize the Fe<sup>3+</sup>/Fe<sup>2+</sup> redox cycle through forming a carbon → ligand atoms → Fe ↔ H<sub>2</sub>O<sub>2</sub> electron flux pathway. Their bidirectional electron flux with H<sub>2</sub>O<sub>2</sub> enhances OH· production, thereby improving the Fenton oxidation process. These findings offer crucial insights for overcoming challenges in environmental engineering technologies and underscore the potential superiority of coupled systems in practical applications.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 26","pages":"13458–13469"},"PeriodicalIF":11.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergism between Activated Carbon and Fenton Reaction for Organic Pollutant Degradation: The Hitherto Overlooked Role of Dynamic Single-Atom Sites\",\"authors\":\"Xiaoping Li,&nbsp;Meng Liu,&nbsp;Lanxuan Wen,&nbsp;Rongwei Li,&nbsp;Yu Liu,&nbsp;Shengjiong Yang*,&nbsp;Dahu Ding,&nbsp;Yang Chen,&nbsp;Rongzhi Chen* and Shengming Xu*,&nbsp;\",\"doi\":\"10.1021/acs.est.5c01201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Fenton process and activated carbon are widely used for water treatment, yet both encounter significant challenges, such as slow Fe<sup>3+</sup>/Fe<sup>2+</sup> conversion and rapid adsorbent saturation. Herein, a category of hitherto overlooked dynamic single-atom sites on heteroatom-doped carbons (HDCs) that mitigate the above problems was observed by coupling Fenton and activated carbon. Specifically, the defects on the carbon surface, particularly the heteroatom defects, coordinated with Fe<sup>3+</sup> in the bulk solution to form dynamic single-atom sites that simultaneously suppress the Fe<sup>3+</sup> hydrolysis and promote the Fe<sup>3+</sup>/Fe<sup>2+</sup> conversion. This synergy sustains the efficient oxidation process of the coupled system through up to 5 cycles due to the optimized Fe<sup>3+</sup>/Fe<sup>2+</sup> cycling. Moreover, dynamic single-atom sites enable the continuous removal of adsorbates from the carbon surface, extending the time before adsorption saturation and maintaining nearly 100% efficiency for 480 h. Mechanistic analysis revealed that dynamic single-atom sites optimize the Fe<sup>3+</sup>/Fe<sup>2+</sup> redox cycle through forming a carbon → ligand atoms → Fe ↔ H<sub>2</sub>O<sub>2</sub> electron flux pathway. Their bidirectional electron flux with H<sub>2</sub>O<sub>2</sub> enhances OH· production, thereby improving the Fenton oxidation process. These findings offer crucial insights for overcoming challenges in environmental engineering technologies and underscore the potential superiority of coupled systems in practical applications.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"59 26\",\"pages\":\"13458–13469\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.5c01201\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.5c01201","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

Fenton法和活性炭在水处理中得到了广泛的应用,但两者都面临着Fe3+/Fe2+转化缓慢和吸附剂饱和快等重大挑战。在此,一类迄今为止被忽视的杂原子掺杂碳(HDCs)上的动态单原子位点通过耦合Fenton和活性炭来缓解上述问题。具体来说,碳表面的缺陷,特别是杂原子缺陷,与体溶液中的Fe3+协同形成动态的单原子位点,同时抑制Fe3+的水解,促进Fe3+/Fe2+的转化。由于优化的Fe3+/Fe2+循环,这种协同作用使耦合系统的有效氧化过程维持了多达5个循环。此外,动态单原子位点可以使吸附物从碳表面连续去除,延长吸附饱和前的时间,并在480 h内保持接近100%的效率。机制分析表明,动态单原子位点通过形成碳→配体原子→铁→H2O2的电子通量路径来优化Fe3+/Fe2+氧化还原循环。它们与H2O2的双向电子通量增强了OH·的生成,从而改善了Fenton氧化过程。这些发现为克服环境工程技术中的挑战提供了重要的见解,并强调了耦合系统在实际应用中的潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergism between Activated Carbon and Fenton Reaction for Organic Pollutant Degradation: The Hitherto Overlooked Role of Dynamic Single-Atom Sites

Synergism between Activated Carbon and Fenton Reaction for Organic Pollutant Degradation: The Hitherto Overlooked Role of Dynamic Single-Atom Sites

Fenton process and activated carbon are widely used for water treatment, yet both encounter significant challenges, such as slow Fe3+/Fe2+ conversion and rapid adsorbent saturation. Herein, a category of hitherto overlooked dynamic single-atom sites on heteroatom-doped carbons (HDCs) that mitigate the above problems was observed by coupling Fenton and activated carbon. Specifically, the defects on the carbon surface, particularly the heteroatom defects, coordinated with Fe3+ in the bulk solution to form dynamic single-atom sites that simultaneously suppress the Fe3+ hydrolysis and promote the Fe3+/Fe2+ conversion. This synergy sustains the efficient oxidation process of the coupled system through up to 5 cycles due to the optimized Fe3+/Fe2+ cycling. Moreover, dynamic single-atom sites enable the continuous removal of adsorbates from the carbon surface, extending the time before adsorption saturation and maintaining nearly 100% efficiency for 480 h. Mechanistic analysis revealed that dynamic single-atom sites optimize the Fe3+/Fe2+ redox cycle through forming a carbon → ligand atoms → Fe ↔ H2O2 electron flux pathway. Their bidirectional electron flux with H2O2 enhances OH· production, thereby improving the Fenton oxidation process. These findings offer crucial insights for overcoming challenges in environmental engineering technologies and underscore the potential superiority of coupled systems in practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信