{"title":"基于机械发光材料的全光突触。","authors":"Danni Peng,Haotian Li,Junlu Sun,Yuan Deng,Fuhang Jiao,Yuhong Han,Kaiying Zhang,Jiajia Meng,Xiang Li,Lijun Wang,Li-Min Fu,Qilin Hua,Chong-Xin Shan,Lin Dong","doi":"10.1002/adma.202503376","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing systems hold promises to overcome the inefficiencies of conventional von Neumann architecture, which are constrained by data transfer bottlenecks. However, conventional electrically modulated synapses face inherent limitations such as limited switching speed, elevated power consumption, and substantial interconnection loss. Optical signaling offers a transformative alternative, leveraging ultrafast transmission, high bandwidth, and minimal crosstalk. Here, an all-optical synapse based on a mechanoluminescent material of Li0.1Na0.9NbO3:Pr3+ (LNN:Pr3+) is presented, which emulates biological synapses, including homologous and heterologous synaptic behaviors, through optical signal processing. The engineered trap depth distribution of LNN:Pr3+ enables multi-stimuli response to UV light, mechanical force, and thermal input, replicating diverse synaptic functionalities such as short-term potentiation (STP), long-term potentiation (LTP), paired-pulse facilitation (PPF), and learning-experience behavioral adaptation. Furthermore, its utility is showcased in hardware-level denoising and multimode-fused perception, achieving spatiotemporal feature extraction in dynamic environments. This work not only sheds light into designing fully optical synapses but also bridges mechanoluminescence (ML) with neuromorphic engineering, advancing energy-efficient, light-driven artificial intelligence technologies.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"51 1","pages":"e2503376"},"PeriodicalIF":26.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-Optical Synapses Based on a Mechanoluminescent Material.\",\"authors\":\"Danni Peng,Haotian Li,Junlu Sun,Yuan Deng,Fuhang Jiao,Yuhong Han,Kaiying Zhang,Jiajia Meng,Xiang Li,Lijun Wang,Li-Min Fu,Qilin Hua,Chong-Xin Shan,Lin Dong\",\"doi\":\"10.1002/adma.202503376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic computing systems hold promises to overcome the inefficiencies of conventional von Neumann architecture, which are constrained by data transfer bottlenecks. However, conventional electrically modulated synapses face inherent limitations such as limited switching speed, elevated power consumption, and substantial interconnection loss. Optical signaling offers a transformative alternative, leveraging ultrafast transmission, high bandwidth, and minimal crosstalk. Here, an all-optical synapse based on a mechanoluminescent material of Li0.1Na0.9NbO3:Pr3+ (LNN:Pr3+) is presented, which emulates biological synapses, including homologous and heterologous synaptic behaviors, through optical signal processing. The engineered trap depth distribution of LNN:Pr3+ enables multi-stimuli response to UV light, mechanical force, and thermal input, replicating diverse synaptic functionalities such as short-term potentiation (STP), long-term potentiation (LTP), paired-pulse facilitation (PPF), and learning-experience behavioral adaptation. Furthermore, its utility is showcased in hardware-level denoising and multimode-fused perception, achieving spatiotemporal feature extraction in dynamic environments. This work not only sheds light into designing fully optical synapses but also bridges mechanoluminescence (ML) with neuromorphic engineering, advancing energy-efficient, light-driven artificial intelligence technologies.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"51 1\",\"pages\":\"e2503376\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202503376\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202503376","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
All-Optical Synapses Based on a Mechanoluminescent Material.
Neuromorphic computing systems hold promises to overcome the inefficiencies of conventional von Neumann architecture, which are constrained by data transfer bottlenecks. However, conventional electrically modulated synapses face inherent limitations such as limited switching speed, elevated power consumption, and substantial interconnection loss. Optical signaling offers a transformative alternative, leveraging ultrafast transmission, high bandwidth, and minimal crosstalk. Here, an all-optical synapse based on a mechanoluminescent material of Li0.1Na0.9NbO3:Pr3+ (LNN:Pr3+) is presented, which emulates biological synapses, including homologous and heterologous synaptic behaviors, through optical signal processing. The engineered trap depth distribution of LNN:Pr3+ enables multi-stimuli response to UV light, mechanical force, and thermal input, replicating diverse synaptic functionalities such as short-term potentiation (STP), long-term potentiation (LTP), paired-pulse facilitation (PPF), and learning-experience behavioral adaptation. Furthermore, its utility is showcased in hardware-level denoising and multimode-fused perception, achieving spatiotemporal feature extraction in dynamic environments. This work not only sheds light into designing fully optical synapses but also bridges mechanoluminescence (ML) with neuromorphic engineering, advancing energy-efficient, light-driven artificial intelligence technologies.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.