可穿戴电子产品用柔性和可扭转znmn2o4 -电沉积纱线超级电容器。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shalu Rani*, Gaurav Khandelwal, Abhinav Tandon, Sanjay Kumar, Akshaya Kumar Aliyana, Suresh C. Pillai, George K. Stylios, Nikolaj Gadegaard and Daniel M. Mulvihill*, 
{"title":"可穿戴电子产品用柔性和可扭转znmn2o4 -电沉积纱线超级电容器。","authors":"Shalu Rani*,&nbsp;Gaurav Khandelwal,&nbsp;Abhinav Tandon,&nbsp;Sanjay Kumar,&nbsp;Akshaya Kumar Aliyana,&nbsp;Suresh C. Pillai,&nbsp;George K. Stylios,&nbsp;Nikolaj Gadegaard and Daniel M. Mulvihill*,&nbsp;","doi":"10.1021/acsami.5c06545","DOIUrl":null,"url":null,"abstract":"<p >The growing demand for wearable electronics has driven interest in flexible fiber-based supercapacitors (F-SCs) as power sources, offering tunable sizes, adaptable shapes, and versatile design possibilities. This study presents the fabrication of a highly flexible and twistable fiber-shaped yarn supercapacitor (F-SC) via direct electrodeposition of ternary metal-oxide nanostructures (ZnMn<sub>2</sub>O<sub>4</sub>) onto flexible and conductive carbon yarn substrates. The uniform growth of ZnMn<sub>2</sub>O<sub>4</sub> nanostructures on the carbon yarn not only enhances the capacitive performance of the fabricated devices but also significantly enhances the mechanical integrity of the electrodes, ensuring excellent bending and electrochemical stability for the F-SC device. The device exhibits a high areal capacitance of 87.6 mF/cm<sup>2</sup> at a scan rate of 10 mV/s and 35.4 mF/cm<sup>2</sup> at a current density of 0.1 mA/cm<sup>2</sup>. Furthermore, it retains 92% of its capacitance after 10,000 charge–discharge cycles, achieving energy and power densities of 11 μWh/cm<sup>2</sup> and 385 μW/cm<sup>2</sup>, and maintaining consistent performance under varying bending and twisting conditions. This work offers a simple, cost-effective, and efficient strategy for developing flexible and twistable fiber electrodes using a straightforward electrodeposition process. The fabricated electrodes hold great potential in developing flexible energy storage technologies and enabling seamless integration into next-generation portable and wearable electronics.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 27","pages":"39108–39117"},"PeriodicalIF":8.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsami.5c06545","citationCount":"0","resultStr":"{\"title\":\"Flexible and Twistable ZnMn2O4-Electrodeposited Yarn Supercapacitors for Wearable Electronics\",\"authors\":\"Shalu Rani*,&nbsp;Gaurav Khandelwal,&nbsp;Abhinav Tandon,&nbsp;Sanjay Kumar,&nbsp;Akshaya Kumar Aliyana,&nbsp;Suresh C. Pillai,&nbsp;George K. Stylios,&nbsp;Nikolaj Gadegaard and Daniel M. Mulvihill*,&nbsp;\",\"doi\":\"10.1021/acsami.5c06545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The growing demand for wearable electronics has driven interest in flexible fiber-based supercapacitors (F-SCs) as power sources, offering tunable sizes, adaptable shapes, and versatile design possibilities. This study presents the fabrication of a highly flexible and twistable fiber-shaped yarn supercapacitor (F-SC) via direct electrodeposition of ternary metal-oxide nanostructures (ZnMn<sub>2</sub>O<sub>4</sub>) onto flexible and conductive carbon yarn substrates. The uniform growth of ZnMn<sub>2</sub>O<sub>4</sub> nanostructures on the carbon yarn not only enhances the capacitive performance of the fabricated devices but also significantly enhances the mechanical integrity of the electrodes, ensuring excellent bending and electrochemical stability for the F-SC device. The device exhibits a high areal capacitance of 87.6 mF/cm<sup>2</sup> at a scan rate of 10 mV/s and 35.4 mF/cm<sup>2</sup> at a current density of 0.1 mA/cm<sup>2</sup>. Furthermore, it retains 92% of its capacitance after 10,000 charge–discharge cycles, achieving energy and power densities of 11 μWh/cm<sup>2</sup> and 385 μW/cm<sup>2</sup>, and maintaining consistent performance under varying bending and twisting conditions. This work offers a simple, cost-effective, and efficient strategy for developing flexible and twistable fiber electrodes using a straightforward electrodeposition process. The fabricated electrodes hold great potential in developing flexible energy storage technologies and enabling seamless integration into next-generation portable and wearable electronics.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 27\",\"pages\":\"39108–39117\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsami.5c06545\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c06545\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c06545","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对可穿戴电子产品日益增长的需求推动了人们对柔性光纤超级电容器(F-SCs)作为电源的兴趣,这种电容器提供可调谐的尺寸、可适应的形状和多种设计可能性。本研究通过直接电沉积三元金属氧化物纳米结构(ZnMn2O4)在柔性和导电碳丝衬底上制备了一种高柔性和可扭转的纤维形纱线超级电容器(F-SC)。在碳丝上均匀生长的ZnMn2O4纳米结构不仅提高了器件的电容性能,而且显著提高了电极的机械完整性,保证了F-SC器件优异的弯曲和电化学稳定性。该器件在扫描速率为10 mV/s时具有87.6 mF/cm2的高面电容,在电流密度为0.1 mA/cm2时具有35.4 mF/cm2的高面电容。此外,在10,000次充放电循环后,其容量保持92%,能量和功率密度分别为11 μWh/cm2和385 μW/cm2,并且在不同的弯曲和扭转条件下保持一致的性能。这项工作为使用直接的电沉积工艺开发柔性和可弯曲的纤维电极提供了一种简单、经济、高效的策略。制造的电极在开发柔性储能技术和实现无缝集成到下一代便携式和可穿戴电子产品方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible and Twistable ZnMn2O4-Electrodeposited Yarn Supercapacitors for Wearable Electronics

The growing demand for wearable electronics has driven interest in flexible fiber-based supercapacitors (F-SCs) as power sources, offering tunable sizes, adaptable shapes, and versatile design possibilities. This study presents the fabrication of a highly flexible and twistable fiber-shaped yarn supercapacitor (F-SC) via direct electrodeposition of ternary metal-oxide nanostructures (ZnMn2O4) onto flexible and conductive carbon yarn substrates. The uniform growth of ZnMn2O4 nanostructures on the carbon yarn not only enhances the capacitive performance of the fabricated devices but also significantly enhances the mechanical integrity of the electrodes, ensuring excellent bending and electrochemical stability for the F-SC device. The device exhibits a high areal capacitance of 87.6 mF/cm2 at a scan rate of 10 mV/s and 35.4 mF/cm2 at a current density of 0.1 mA/cm2. Furthermore, it retains 92% of its capacitance after 10,000 charge–discharge cycles, achieving energy and power densities of 11 μWh/cm2 and 385 μW/cm2, and maintaining consistent performance under varying bending and twisting conditions. This work offers a simple, cost-effective, and efficient strategy for developing flexible and twistable fiber electrodes using a straightforward electrodeposition process. The fabricated electrodes hold great potential in developing flexible energy storage technologies and enabling seamless integration into next-generation portable and wearable electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信