Jayant Murlidhar Kushwaha, Majji Sai Sudha Rani, Shilpy Singh
{"title":"靶向猴痘病毒(MPXV):蛋白抑制的分子对接研究策略","authors":"Jayant Murlidhar Kushwaha, Majji Sai Sudha Rani, Shilpy Singh","doi":"10.1007/s11262-025-02171-1","DOIUrl":null,"url":null,"abstract":"<p><p>In the year 2022, the outbreak of monkeypox virus (MPXV) occurred in the various countries of Africa, particularly Central and West Africa, North America, South America, Europe, and other countries. Without any delay it spread across more than 100 countries infecting around 116,015 people causing around 255 deaths. Monkeypox is a major public health issue, and it is important to search for new therapeutic approaches. This review article is a review of molecular docking studies to identify possible protein inhibition approaches against Monkeypox virus. The exploration on the molecular architecture of the main viral proteins and their relationships with the host cell, emphasizing how these interactions are important in the viral cycle. By gathering data from multiple molecular docking studies, the evaluation of how effective different structural elements are in disrupting these protein interactions is conducted. The results of the analysis reveal how narrowed the focus of molecular interventions is, which holds the promise for the development of antiviral therapies for Monkeypox (Mpox). Not only does this review update the current understanding of the pathophysiology of Monkeypox, but it also provides a basis for more research to deal with this new viral threat. It will be important for the design of inhibitors that can block the replication and dissemination of MPXV to understand the mechanisms of action of the viral proteins and their interactions with the host cell.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting monkeypox virus (MPXV): strategies for molecular docking studies on protein inhibition.\",\"authors\":\"Jayant Murlidhar Kushwaha, Majji Sai Sudha Rani, Shilpy Singh\",\"doi\":\"10.1007/s11262-025-02171-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the year 2022, the outbreak of monkeypox virus (MPXV) occurred in the various countries of Africa, particularly Central and West Africa, North America, South America, Europe, and other countries. Without any delay it spread across more than 100 countries infecting around 116,015 people causing around 255 deaths. Monkeypox is a major public health issue, and it is important to search for new therapeutic approaches. This review article is a review of molecular docking studies to identify possible protein inhibition approaches against Monkeypox virus. The exploration on the molecular architecture of the main viral proteins and their relationships with the host cell, emphasizing how these interactions are important in the viral cycle. By gathering data from multiple molecular docking studies, the evaluation of how effective different structural elements are in disrupting these protein interactions is conducted. The results of the analysis reveal how narrowed the focus of molecular interventions is, which holds the promise for the development of antiviral therapies for Monkeypox (Mpox). Not only does this review update the current understanding of the pathophysiology of Monkeypox, but it also provides a basis for more research to deal with this new viral threat. It will be important for the design of inhibitors that can block the replication and dissemination of MPXV to understand the mechanisms of action of the viral proteins and their interactions with the host cell.</p>\",\"PeriodicalId\":51212,\"journal\":{\"name\":\"Virus Genes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus Genes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11262-025-02171-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-025-02171-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Targeting monkeypox virus (MPXV): strategies for molecular docking studies on protein inhibition.
In the year 2022, the outbreak of monkeypox virus (MPXV) occurred in the various countries of Africa, particularly Central and West Africa, North America, South America, Europe, and other countries. Without any delay it spread across more than 100 countries infecting around 116,015 people causing around 255 deaths. Monkeypox is a major public health issue, and it is important to search for new therapeutic approaches. This review article is a review of molecular docking studies to identify possible protein inhibition approaches against Monkeypox virus. The exploration on the molecular architecture of the main viral proteins and their relationships with the host cell, emphasizing how these interactions are important in the viral cycle. By gathering data from multiple molecular docking studies, the evaluation of how effective different structural elements are in disrupting these protein interactions is conducted. The results of the analysis reveal how narrowed the focus of molecular interventions is, which holds the promise for the development of antiviral therapies for Monkeypox (Mpox). Not only does this review update the current understanding of the pathophysiology of Monkeypox, but it also provides a basis for more research to deal with this new viral threat. It will be important for the design of inhibitors that can block the replication and dissemination of MPXV to understand the mechanisms of action of the viral proteins and their interactions with the host cell.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.