质子核磁共振光谱法定量土壤中聚己二酸丁二酯基微纳米塑料。

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Alexis B Gillmore, Carlos A Steren, Douglas G Hayes, Sean M Schaeffer
{"title":"质子核磁共振光谱法定量土壤中聚己二酸丁二酯基微纳米塑料。","authors":"Alexis B Gillmore, Carlos A Steren, Douglas G Hayes, Sean M Schaeffer","doi":"10.3791/67471","DOIUrl":null,"url":null,"abstract":"<p><p>A method to recover and quantify micro- and nano-plastics (MPs and NPs) formed in the soil during biodegradation is needed to accurately assess the degradation and environmental impact of biodegradable plastic products. The presence of MPs and NPs in soil may alter soil properties like aggregation behavior or have toxic effects on soil biota. Existing MP recovery methods are not always suitable for measuring biodegradable polymers like polybutylene adipate terephthalate (PBAT); some common digestion procedures with acids or oxidizers can destroy PBAT-based biodegradable MPs. Identification methods like micro-FTIR and micro-Raman spectroscopy are also limited by the minimum size of particles that can be recovered and analyzed. Therefore, this method was developed to extract and quantify PBAT from soil to assess the mass fraction of MPs and NPs in the soil without chemically transforming PBAT. In the protocol, a chloroform-methanol solution is used to selectively extract PBAT from the soil. The solvent is evaporated from the extract, and then the extract is redissolved in deuterated chloroform. The extract is analyzed by proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H-QNMR) under quantitative parameters to quantify the amount of PBAT in each sample. Solvent extraction efficiencies for PBAT range from 76% in a shady loam soil to 45% in an Elkhorn sandy loam soil. PBAT recovery may be reduced for photo-oxidized materials compared to pristine ones and may be reduced in soils with high clay content. Extraction efficiencies do not depend on PBAT concentration within the test range, but lower extraction efficiencies were observed for NPs than for MPs. PBAT quantification results were comparable to the quantification of plastic degradation by measuring cumulative soil respiration in a laboratory incubation study.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 220","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification of Polybutylene Adipate Terephthalate-based Micro- and Nano-plastics from Soil Using Proton Nuclear Magnetic Resonance Spectroscopy.\",\"authors\":\"Alexis B Gillmore, Carlos A Steren, Douglas G Hayes, Sean M Schaeffer\",\"doi\":\"10.3791/67471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A method to recover and quantify micro- and nano-plastics (MPs and NPs) formed in the soil during biodegradation is needed to accurately assess the degradation and environmental impact of biodegradable plastic products. The presence of MPs and NPs in soil may alter soil properties like aggregation behavior or have toxic effects on soil biota. Existing MP recovery methods are not always suitable for measuring biodegradable polymers like polybutylene adipate terephthalate (PBAT); some common digestion procedures with acids or oxidizers can destroy PBAT-based biodegradable MPs. Identification methods like micro-FTIR and micro-Raman spectroscopy are also limited by the minimum size of particles that can be recovered and analyzed. Therefore, this method was developed to extract and quantify PBAT from soil to assess the mass fraction of MPs and NPs in the soil without chemically transforming PBAT. In the protocol, a chloroform-methanol solution is used to selectively extract PBAT from the soil. The solvent is evaporated from the extract, and then the extract is redissolved in deuterated chloroform. The extract is analyzed by proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H-QNMR) under quantitative parameters to quantify the amount of PBAT in each sample. Solvent extraction efficiencies for PBAT range from 76% in a shady loam soil to 45% in an Elkhorn sandy loam soil. PBAT recovery may be reduced for photo-oxidized materials compared to pristine ones and may be reduced in soils with high clay content. Extraction efficiencies do not depend on PBAT concentration within the test range, but lower extraction efficiencies were observed for NPs than for MPs. PBAT quantification results were comparable to the quantification of plastic degradation by measuring cumulative soil respiration in a laboratory incubation study.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 220\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/67471\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67471","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了准确评估可生物降解塑料产品的降解和环境影响,需要一种回收和量化土壤中生物降解过程中形成的微纳米塑料(MPs和NPs)的方法。MPs和NPs在土壤中的存在可能会改变土壤的性质,如聚集行为或对土壤生物群产生毒性作用。现有的MP回收方法并不总是适用于测量生物可降解聚合物,如聚己二酸丁二酯(PBAT);一些常见的酸或氧化剂消化过程会破坏pbat基的可生物降解MPs。识别方法,如微ftir和微拉曼光谱也受到可以回收和分析的最小颗粒尺寸的限制。因此,我们开发了从土壤中提取和量化PBAT的方法,以评估土壤中MPs和NPs的质量分数,而不需要化学转化PBAT。在该方案中,使用氯仿-甲醇溶液选择性地从土壤中提取PBAT。将溶剂从萃取物中蒸发,然后将萃取物再溶解在氘化氯仿中。在定量参数下,采用质子核磁共振波谱(1H-QNMR)对提取液进行分析,定量各样品中PBAT的含量。PBAT的溶剂萃取效率在阴凉壤土中为76%,在Elkhorn砂壤土中为45%。与原始材料相比,光氧化材料的PBAT回收率可能会降低,并且在粘土含量高的土壤中可能会降低。萃取效率不依赖于测试范围内PBAT的浓度,但观察到NPs的萃取效率低于MPs。PBAT的量化结果与实验室孵化研究中通过测量累积土壤呼吸来量化塑料降解的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantification of Polybutylene Adipate Terephthalate-based Micro- and Nano-plastics from Soil Using Proton Nuclear Magnetic Resonance Spectroscopy.

A method to recover and quantify micro- and nano-plastics (MPs and NPs) formed in the soil during biodegradation is needed to accurately assess the degradation and environmental impact of biodegradable plastic products. The presence of MPs and NPs in soil may alter soil properties like aggregation behavior or have toxic effects on soil biota. Existing MP recovery methods are not always suitable for measuring biodegradable polymers like polybutylene adipate terephthalate (PBAT); some common digestion procedures with acids or oxidizers can destroy PBAT-based biodegradable MPs. Identification methods like micro-FTIR and micro-Raman spectroscopy are also limited by the minimum size of particles that can be recovered and analyzed. Therefore, this method was developed to extract and quantify PBAT from soil to assess the mass fraction of MPs and NPs in the soil without chemically transforming PBAT. In the protocol, a chloroform-methanol solution is used to selectively extract PBAT from the soil. The solvent is evaporated from the extract, and then the extract is redissolved in deuterated chloroform. The extract is analyzed by proton nuclear magnetic resonance spectroscopy (1H-QNMR) under quantitative parameters to quantify the amount of PBAT in each sample. Solvent extraction efficiencies for PBAT range from 76% in a shady loam soil to 45% in an Elkhorn sandy loam soil. PBAT recovery may be reduced for photo-oxidized materials compared to pristine ones and may be reduced in soils with high clay content. Extraction efficiencies do not depend on PBAT concentration within the test range, but lower extraction efficiencies were observed for NPs than for MPs. PBAT quantification results were comparable to the quantification of plastic degradation by measuring cumulative soil respiration in a laboratory incubation study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信