{"title":"缺乏脆性X信使核糖核蛋白的人诱导多能干细胞衍生星形胶质细胞的生成和表征。","authors":"Bharath Kumar Reddy, Nikhita Annaiyappa, Aditi Bhattacharya, Sumantra Chattarji, Rakhi Pal","doi":"10.3791/68081","DOIUrl":null,"url":null,"abstract":"<p><p>Fragile X syndrome (FXS), a leading inherited cause of autism spectrum disorder and intellectual disability, has been studied extensively using rodent models. More recently, human stem cell-derived model systems have also been used to gain mechanistic insights into the pathophysiology of FXS. However, these studies have focused almost exclusively on neurons. Further, despite growing evidence for a key role of glia in neuronal function in health and disease, little is known about how human astrocytes are affected by FXS. Therefore, in this study, we successfully developed a protocol that captures key spatiotemporal milestones of brain development and aligns with the process of gliogenesis as well. Together this offers a useful framework for studying neurodevelopmental disorders. First, we patterned the human induced pluripotent stem cells into the neuroectodermal lineage with dual Suppressor of Mothers against Decapentaplegic (SMAD) inhibition and small molecules. Subsequently, we utilized specific growth factors and cytokines to generate control (CTRL) and FXS patient-derived astrocytic progenitor cells (APCs). Treatment of APCs with ciliary neurotrophic factor, a differentiating cytokine, regulated and drove the progenitor cells towards astrocytic maturation, yielding forebrain-specific glial fibrillary acidic protein-expressing astrocytes. We found that these astrocytes are functional, as evidenced by their calcium responses to ATP application, and they exhibit dysregulated glycolytic and mitochondrial metabolism in FXS. Taken together, these findings provide a useful experimental platform of human origin for the investigation of cell-autonomous and non-cell-autonomous consequences of alterations in astrocytic function caused by neurodevelopmental disorders.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 220","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation and Characterization of Human Induced Pluripotent Stem Cell-derived Astrocytes Lacking Fragile X Messenger Ribonucleoprotein.\",\"authors\":\"Bharath Kumar Reddy, Nikhita Annaiyappa, Aditi Bhattacharya, Sumantra Chattarji, Rakhi Pal\",\"doi\":\"10.3791/68081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fragile X syndrome (FXS), a leading inherited cause of autism spectrum disorder and intellectual disability, has been studied extensively using rodent models. More recently, human stem cell-derived model systems have also been used to gain mechanistic insights into the pathophysiology of FXS. However, these studies have focused almost exclusively on neurons. Further, despite growing evidence for a key role of glia in neuronal function in health and disease, little is known about how human astrocytes are affected by FXS. Therefore, in this study, we successfully developed a protocol that captures key spatiotemporal milestones of brain development and aligns with the process of gliogenesis as well. Together this offers a useful framework for studying neurodevelopmental disorders. First, we patterned the human induced pluripotent stem cells into the neuroectodermal lineage with dual Suppressor of Mothers against Decapentaplegic (SMAD) inhibition and small molecules. Subsequently, we utilized specific growth factors and cytokines to generate control (CTRL) and FXS patient-derived astrocytic progenitor cells (APCs). Treatment of APCs with ciliary neurotrophic factor, a differentiating cytokine, regulated and drove the progenitor cells towards astrocytic maturation, yielding forebrain-specific glial fibrillary acidic protein-expressing astrocytes. We found that these astrocytes are functional, as evidenced by their calcium responses to ATP application, and they exhibit dysregulated glycolytic and mitochondrial metabolism in FXS. Taken together, these findings provide a useful experimental platform of human origin for the investigation of cell-autonomous and non-cell-autonomous consequences of alterations in astrocytic function caused by neurodevelopmental disorders.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 220\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/68081\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/68081","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Generation and Characterization of Human Induced Pluripotent Stem Cell-derived Astrocytes Lacking Fragile X Messenger Ribonucleoprotein.
Fragile X syndrome (FXS), a leading inherited cause of autism spectrum disorder and intellectual disability, has been studied extensively using rodent models. More recently, human stem cell-derived model systems have also been used to gain mechanistic insights into the pathophysiology of FXS. However, these studies have focused almost exclusively on neurons. Further, despite growing evidence for a key role of glia in neuronal function in health and disease, little is known about how human astrocytes are affected by FXS. Therefore, in this study, we successfully developed a protocol that captures key spatiotemporal milestones of brain development and aligns with the process of gliogenesis as well. Together this offers a useful framework for studying neurodevelopmental disorders. First, we patterned the human induced pluripotent stem cells into the neuroectodermal lineage with dual Suppressor of Mothers against Decapentaplegic (SMAD) inhibition and small molecules. Subsequently, we utilized specific growth factors and cytokines to generate control (CTRL) and FXS patient-derived astrocytic progenitor cells (APCs). Treatment of APCs with ciliary neurotrophic factor, a differentiating cytokine, regulated and drove the progenitor cells towards astrocytic maturation, yielding forebrain-specific glial fibrillary acidic protein-expressing astrocytes. We found that these astrocytes are functional, as evidenced by their calcium responses to ATP application, and they exhibit dysregulated glycolytic and mitochondrial metabolism in FXS. Taken together, these findings provide a useful experimental platform of human origin for the investigation of cell-autonomous and non-cell-autonomous consequences of alterations in astrocytic function caused by neurodevelopmental disorders.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.