人工智能在多囊卵巢综合征治疗中的应用:过去、现在和未来。

IF 4.8 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Radiologia Medica Pub Date : 2025-09-01 Epub Date: 2025-06-23 DOI:10.1007/s11547-025-02032-9
Jinyuan Wang, Ruxin Chen, Haojun Long, Junhui He, Masong Tang, Mingxuan Su, Renhe Deng, Yuru Chen, Rongqian Ni, Shuhua Zhao, Meng Rao, Huawei Wang, Li Tang
{"title":"人工智能在多囊卵巢综合征治疗中的应用:过去、现在和未来。","authors":"Jinyuan Wang, Ruxin Chen, Haojun Long, Junhui He, Masong Tang, Mingxuan Su, Renhe Deng, Yuru Chen, Rongqian Ni, Shuhua Zhao, Meng Rao, Huawei Wang, Li Tang","doi":"10.1007/s11547-025-02032-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Integrating artificial intelligence (AI) prospected in the practical clinical management of polycystic ovary syndrome (PCOS) promised significant improvement in efficiency, interpretability, and generalizability.</p><p><strong>Purpose: </strong>To delineate a comprehensive inventory of AI-driven interventions pertinent to PCOS across diverse clinical contexts.</p><p><strong>Evidence reviews: </strong>AI-based analytics profoundly transformed the management of PCOS, particularly in the domains of prediction, diagnosis, classification, and screening of potential complications.</p><p><strong>Results: </strong>Our analysis traced the principal applications of AI in PCOS management, focusing on prediction, diagnosis, classification, and screening. Furthermore, this study ventures into the potential of amalgamating and augmenting existing digital health technologies to forge an AI-augmented digital healthcare ecosystem encompassing the prevention and holistic management of PCOS. We also discuss strategic avenues that may facilitate the clinical translation of these innovative systems.</p><p><strong>Conclusion: </strong>This systematic review consolidated the latest advancements in AI-driven PCOS management encompassing prediction, diagnosis, classification, and screening of potential complications, developing a digital healthcare framework tailored to the practical clinical management of PCOS.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":"1409-1441"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454626/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in polycystic ovarian syndrome management: past, present, and future.\",\"authors\":\"Jinyuan Wang, Ruxin Chen, Haojun Long, Junhui He, Masong Tang, Mingxuan Su, Renhe Deng, Yuru Chen, Rongqian Ni, Shuhua Zhao, Meng Rao, Huawei Wang, Li Tang\",\"doi\":\"10.1007/s11547-025-02032-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Integrating artificial intelligence (AI) prospected in the practical clinical management of polycystic ovary syndrome (PCOS) promised significant improvement in efficiency, interpretability, and generalizability.</p><p><strong>Purpose: </strong>To delineate a comprehensive inventory of AI-driven interventions pertinent to PCOS across diverse clinical contexts.</p><p><strong>Evidence reviews: </strong>AI-based analytics profoundly transformed the management of PCOS, particularly in the domains of prediction, diagnosis, classification, and screening of potential complications.</p><p><strong>Results: </strong>Our analysis traced the principal applications of AI in PCOS management, focusing on prediction, diagnosis, classification, and screening. Furthermore, this study ventures into the potential of amalgamating and augmenting existing digital health technologies to forge an AI-augmented digital healthcare ecosystem encompassing the prevention and holistic management of PCOS. We also discuss strategic avenues that may facilitate the clinical translation of these innovative systems.</p><p><strong>Conclusion: </strong>This systematic review consolidated the latest advancements in AI-driven PCOS management encompassing prediction, diagnosis, classification, and screening of potential complications, developing a digital healthcare framework tailored to the practical clinical management of PCOS.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"1409-1441\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12454626/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-025-02032-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-02032-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:将人工智能(AI)应用于多囊卵巢综合征(PCOS)的临床管理中,在效率、可解释性和普遍性方面有显著提高。目的:在不同的临床背景下描述与PCOS相关的人工智能驱动干预措施的综合清单。证据综述:基于人工智能的分析深刻地改变了多囊卵巢综合征的管理,特别是在预测、诊断、分类和潜在并发症筛查方面。结果:我们的分析追踪了人工智能在PCOS管理中的主要应用,重点是预测、诊断、分类和筛查。此外,本研究探讨了合并和增强现有数字健康技术的潜力,以建立一个包括多囊卵巢综合征预防和整体管理的人工智能增强数字医疗生态系统。我们还讨论了可能促进这些创新系统临床转化的战略途径。结论:本系统综述整合了人工智能驱动的多囊卵巢综合征(PCOS)管理的最新进展,包括预测、诊断、分类和潜在并发症筛查,开发了适合多囊卵巢综合征(PCOS)实际临床管理的数字医疗框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence in polycystic ovarian syndrome management: past, present, and future.

Background: Integrating artificial intelligence (AI) prospected in the practical clinical management of polycystic ovary syndrome (PCOS) promised significant improvement in efficiency, interpretability, and generalizability.

Purpose: To delineate a comprehensive inventory of AI-driven interventions pertinent to PCOS across diverse clinical contexts.

Evidence reviews: AI-based analytics profoundly transformed the management of PCOS, particularly in the domains of prediction, diagnosis, classification, and screening of potential complications.

Results: Our analysis traced the principal applications of AI in PCOS management, focusing on prediction, diagnosis, classification, and screening. Furthermore, this study ventures into the potential of amalgamating and augmenting existing digital health technologies to forge an AI-augmented digital healthcare ecosystem encompassing the prevention and holistic management of PCOS. We also discuss strategic avenues that may facilitate the clinical translation of these innovative systems.

Conclusion: This systematic review consolidated the latest advancements in AI-driven PCOS management encompassing prediction, diagnosis, classification, and screening of potential complications, developing a digital healthcare framework tailored to the practical clinical management of PCOS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiologia Medica
Radiologia Medica 医学-核医学
CiteScore
14.10
自引率
7.90%
发文量
133
审稿时长
4-8 weeks
期刊介绍: Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信