乳化剂和胶凝剂的32因子设计优化了菊花素乳液的配方,增强了外用给药效果。

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Neha Singh, Phool Chandra
{"title":"乳化剂和胶凝剂的32因子设计优化了菊花素乳液的配方,增强了外用给药效果。","authors":"Neha Singh, Phool Chandra","doi":"10.1080/09205063.2025.2522758","DOIUrl":null,"url":null,"abstract":"<p><p>This study focused on the development and optimization of a chrysin-loaded emulgel for enhanced topical delivery using a 3<sup>2</sup> factorial design. Preformulation and compatibility studies, including FTIR and DSC, confirmed the chemical stability of chrysin with selected excipients, carbopol 934, tween 80, and light liquid paraffin. By using 3<sup>2</sup> factorial design, a total 9 formulations were prepared (F1-F9), employing different concentrations of carbopol 934 and tween 80 as independent variables. The prepared formulation was evaluated for drug content, viscosity, in-vitro drug release, globule size, pH, spreadability, and stability. The optimized formulation was identified through statistical analysis, response surface methodology (RSM), and overlay plots of independent variables versus dependent responses. In the results, drug content uniformity (96.34%-98.25%) viscosity (553.25-736.38 cP), globule size (7.57-13.7 µm), drug release (78.34%-86.26%), pH (6.44-6.82) and spreadability (17-22 g cm/s) were all within the acceptable range for emulgel. The RSM and overlay plots identified F3 as an optimized formulation with a desirability score of 0.986. The optimized formulation demonstrated ideal performance with the viscosity of 647.38 cP, globule size of 10.23 µm, drug release of 82.57%, drug content of 98.25%, pH of 6.68, and spreadability of 20 g·cm/s. The optimized formulation composed of chrysin (1%), light liquid paraffin (7.5%), mentha oil (4%), tween 80 (1.5%), carbopol 934 (3%), and methylparaben (0.03%). In-vitro permeation studies showed sustained drug diffusion over 12 h (112.72 µg/cm<sup>2</sup>), without an initial burst, indicating controlled release behavior. The developed emulgel system presents a promising approach for the effective topical delivery of chrysin.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-26"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation and optimization of chrysin emulgel using 3<sup>2</sup> factorial design of emulsifying and gelling agent for enhanced topical delivery.\",\"authors\":\"Neha Singh, Phool Chandra\",\"doi\":\"10.1080/09205063.2025.2522758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study focused on the development and optimization of a chrysin-loaded emulgel for enhanced topical delivery using a 3<sup>2</sup> factorial design. Preformulation and compatibility studies, including FTIR and DSC, confirmed the chemical stability of chrysin with selected excipients, carbopol 934, tween 80, and light liquid paraffin. By using 3<sup>2</sup> factorial design, a total 9 formulations were prepared (F1-F9), employing different concentrations of carbopol 934 and tween 80 as independent variables. The prepared formulation was evaluated for drug content, viscosity, in-vitro drug release, globule size, pH, spreadability, and stability. The optimized formulation was identified through statistical analysis, response surface methodology (RSM), and overlay plots of independent variables versus dependent responses. In the results, drug content uniformity (96.34%-98.25%) viscosity (553.25-736.38 cP), globule size (7.57-13.7 µm), drug release (78.34%-86.26%), pH (6.44-6.82) and spreadability (17-22 g cm/s) were all within the acceptable range for emulgel. The RSM and overlay plots identified F3 as an optimized formulation with a desirability score of 0.986. The optimized formulation demonstrated ideal performance with the viscosity of 647.38 cP, globule size of 10.23 µm, drug release of 82.57%, drug content of 98.25%, pH of 6.68, and spreadability of 20 g·cm/s. The optimized formulation composed of chrysin (1%), light liquid paraffin (7.5%), mentha oil (4%), tween 80 (1.5%), carbopol 934 (3%), and methylparaben (0.03%). In-vitro permeation studies showed sustained drug diffusion over 12 h (112.72 µg/cm<sup>2</sup>), without an initial burst, indicating controlled release behavior. The developed emulgel system presents a promising approach for the effective topical delivery of chrysin.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-26\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2025.2522758\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2522758","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是利用32因子设计开发和优化一种含有菊花素的乳液,以增强局部给药。通过FTIR和DSC的配伍研究,确定了菊花素与所选辅料卡波波尔934、吐温80和轻质液体石蜡的化学稳定性。采用32因子设计,以不同浓度的卡波波尔934和吐温80为自变量,共制备了9个配方(F1-F9)。对制备的制剂进行了药物含量、黏度、体外释药、粒径、pH值、铺展性和稳定性评价。通过统计分析、响应面法(RSM)和自变量与因变量响应的叠加图确定了最佳配方。结果表明,乳状液的药物含量均匀度(96.34% ~ 98.25%)、黏度(553.25 ~ 736.38 cP)、粒径(7.57 ~ 13.7µm)、释放度(78.34% ~ 86.26%)、pH(6.44 ~ 6.82)、展布性(17 ~ 22 g cm/s)均在可接受范围内。RSM和叠加图结果表明,F3为最佳配方,适宜性评分为0.986。优化后的配方粘度为647.38 cP,粒径为10.23µm,释药率为82.57%,药物含量为98.25%,pH为6.68,涂敷性能为20 g·cm/s。优化后的配方由石蜡素(1%)、轻质液体石蜡(7.5%)、薄荷油(4%)、吐温80(1.5%)、卡波波尔934(3%)、对羟基苯甲酸甲酯(0.03%)组成。体外渗透研究显示药物持续扩散超过12小时(112.72µg/cm2),没有初始爆发,表明药物有控释行为。所开发的乳凝胶系统为有效局部递送白菊花素提供了一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formulation and optimization of chrysin emulgel using 32 factorial design of emulsifying and gelling agent for enhanced topical delivery.

This study focused on the development and optimization of a chrysin-loaded emulgel for enhanced topical delivery using a 32 factorial design. Preformulation and compatibility studies, including FTIR and DSC, confirmed the chemical stability of chrysin with selected excipients, carbopol 934, tween 80, and light liquid paraffin. By using 32 factorial design, a total 9 formulations were prepared (F1-F9), employing different concentrations of carbopol 934 and tween 80 as independent variables. The prepared formulation was evaluated for drug content, viscosity, in-vitro drug release, globule size, pH, spreadability, and stability. The optimized formulation was identified through statistical analysis, response surface methodology (RSM), and overlay plots of independent variables versus dependent responses. In the results, drug content uniformity (96.34%-98.25%) viscosity (553.25-736.38 cP), globule size (7.57-13.7 µm), drug release (78.34%-86.26%), pH (6.44-6.82) and spreadability (17-22 g cm/s) were all within the acceptable range for emulgel. The RSM and overlay plots identified F3 as an optimized formulation with a desirability score of 0.986. The optimized formulation demonstrated ideal performance with the viscosity of 647.38 cP, globule size of 10.23 µm, drug release of 82.57%, drug content of 98.25%, pH of 6.68, and spreadability of 20 g·cm/s. The optimized formulation composed of chrysin (1%), light liquid paraffin (7.5%), mentha oil (4%), tween 80 (1.5%), carbopol 934 (3%), and methylparaben (0.03%). In-vitro permeation studies showed sustained drug diffusion over 12 h (112.72 µg/cm2), without an initial burst, indicating controlled release behavior. The developed emulgel system presents a promising approach for the effective topical delivery of chrysin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信