Ziting Xu, Chaofan Du, Sheng Gao, Xinrui Yan, Pan Deng, Yuehan Liu, Junqing Wang, Ruiming Wang, Nan Li
{"title":"通过外源表达mexpod转运蛋白提高大肠杆菌10-HDA的产量。","authors":"Ziting Xu, Chaofan Du, Sheng Gao, Xinrui Yan, Pan Deng, Yuehan Liu, Junqing Wang, Ruiming Wang, Nan Li","doi":"10.3389/fbioe.2025.1590291","DOIUrl":null,"url":null,"abstract":"<p><p>10-Hydroxy-2-decenoic acid (10-HDA) is a medium-chain α,β-unsaturated carboxylic acid that exists in royal jelly with terminal hydroxylation. It has a broad market value because of its antibacterial, anti-inflammatory, anti-tumor, anti-radiation, and other active functions. The one-step whole-cell catalytic synthesis of 10-HDA by constructing engineered strains has improved the reaction rate to a certain extent compared with the previous two-step method. However, the accumulation of 10-HDA to a certain concentration in engineered <i>Escherichia coli</i> strains will damage the structure and function of cells and even lead to death; this unique antibacterial and antimicrobial activity seriously constrains the production of 10-HDA. In this study, we mined a transporter protein from <i>Pseudomonas aeruginosa</i>, which possesses the ability to efficiently efflux 10-HDA, and constructed a transporter protein overexpression strain by using the multicopy chromosome integration technique, which further improved the efficiency of product efflux, weakened the feedback inhibition of 10-HDA to a certain degree, and increased the substrate conversion rate to 88.6%. 10-HDA was synthesized up to 0.94 g/L by the replenishment flow-addition technique, providing a simple and efficient pathway for the yield breakthrough of 10-HDA biosynthesis.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1590291"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183247/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing 10-HDA production of <i>Escherichia coli</i> by heterologous expression of MexHID transporter proteins.\",\"authors\":\"Ziting Xu, Chaofan Du, Sheng Gao, Xinrui Yan, Pan Deng, Yuehan Liu, Junqing Wang, Ruiming Wang, Nan Li\",\"doi\":\"10.3389/fbioe.2025.1590291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>10-Hydroxy-2-decenoic acid (10-HDA) is a medium-chain α,β-unsaturated carboxylic acid that exists in royal jelly with terminal hydroxylation. It has a broad market value because of its antibacterial, anti-inflammatory, anti-tumor, anti-radiation, and other active functions. The one-step whole-cell catalytic synthesis of 10-HDA by constructing engineered strains has improved the reaction rate to a certain extent compared with the previous two-step method. However, the accumulation of 10-HDA to a certain concentration in engineered <i>Escherichia coli</i> strains will damage the structure and function of cells and even lead to death; this unique antibacterial and antimicrobial activity seriously constrains the production of 10-HDA. In this study, we mined a transporter protein from <i>Pseudomonas aeruginosa</i>, which possesses the ability to efficiently efflux 10-HDA, and constructed a transporter protein overexpression strain by using the multicopy chromosome integration technique, which further improved the efficiency of product efflux, weakened the feedback inhibition of 10-HDA to a certain degree, and increased the substrate conversion rate to 88.6%. 10-HDA was synthesized up to 0.94 g/L by the replenishment flow-addition technique, providing a simple and efficient pathway for the yield breakthrough of 10-HDA biosynthesis.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1590291\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183247/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1590291\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1590291","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Enhancing 10-HDA production of Escherichia coli by heterologous expression of MexHID transporter proteins.
10-Hydroxy-2-decenoic acid (10-HDA) is a medium-chain α,β-unsaturated carboxylic acid that exists in royal jelly with terminal hydroxylation. It has a broad market value because of its antibacterial, anti-inflammatory, anti-tumor, anti-radiation, and other active functions. The one-step whole-cell catalytic synthesis of 10-HDA by constructing engineered strains has improved the reaction rate to a certain extent compared with the previous two-step method. However, the accumulation of 10-HDA to a certain concentration in engineered Escherichia coli strains will damage the structure and function of cells and even lead to death; this unique antibacterial and antimicrobial activity seriously constrains the production of 10-HDA. In this study, we mined a transporter protein from Pseudomonas aeruginosa, which possesses the ability to efficiently efflux 10-HDA, and constructed a transporter protein overexpression strain by using the multicopy chromosome integration technique, which further improved the efficiency of product efflux, weakened the feedback inhibition of 10-HDA to a certain degree, and increased the substrate conversion rate to 88.6%. 10-HDA was synthesized up to 0.94 g/L by the replenishment flow-addition technique, providing a simple and efficient pathway for the yield breakthrough of 10-HDA biosynthesis.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.