Youngshim Choi, Yinyan Ma, Samson Tom, Alla Danilkovitch, Liqing Yu
{"title":"一种工程脂肪制剂减少代谢功能障碍相关脂肪性肝病啮齿动物模型中的肝脏炎症和纤维化。","authors":"Youngshim Choi, Yinyan Ma, Samson Tom, Alla Danilkovitch, Liqing Yu","doi":"10.3389/fbioe.2025.1579062","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive stage metabolic dysfunction-associated steatohepatitis (MASH) represent a leading cause of liver-related morbidity and mortality in the U.S. and worldwide. Given the high prevalence and rapid growth of MASLD, the economic and health burden, and MASH-associated morbidity and mortality, there is an unmet medical need for therapies that can stop, slow, or reverse the progression of MASLD. Adipose tissue plays a key role in metabolic health and MASLD pathogenesis through its regulation of energy metabolism and endocrine function. Metabolic dysfunction is often associated with a chronic state of low-grade inflammation in the body including adipose tissue.</p><p><strong>Methods: </strong>In this study, we tested an engineered adipose formulation (AF) composed of a combination of culture-expanded adipose stromal vascular fraction (SVF) cells and adipose tissue particulates in the treatment of MASLD. Human, rat, and mouse AFs (hAF, rAF, and mAF) showed anti-inflammatory activity, which was mediated predominantly by soluble factors present in the adipose particulate. <i>In vivo</i> effects of AFs were evaluated in two rodent models of MASLD: i) obese Zucker rats fed a high-fat, high-cholesterol, and high-fructose diet that mainly manifest hepatic steatosis; and ii) liver-specific CGI-58 knockout mice (LivKO) on a Western diet that display MASH pathologies.</p><p><strong>Results: </strong>Subcutaneous implantation of hAF and rAF in obese Zucker rats significantly reduced hepatic triglycerides. In LivKO mice, mAF reduced hepatic inflammation and fibrosis, though not steatosis, as evidenced by significant decreases in hepatic M1 macrophages and mRNAs for proinflammatory and fibrogenic genes. Immunogenicity testing demonstrated that allogeneic rAF did not induce an immune response, whereas, as anticipated, xenogeneic hAF in rats triggered anti-hAF antibody formation. Despite an immune response against xenogeneic hAF, treatment of rats with hAF ameliorated hepatic steatosis.</p><p><strong>Discussion: </strong>AF has the potential to treat MASH. Future studies focused on the optimization of AF composition, optimal dose and treatment regimen are warranted.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1579062"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179120/pdf/","citationCount":"0","resultStr":"{\"title\":\"An engineered adipose formulation decreases hepatic inflammation and fibrosis in a rodent model of metabolic dysfunction-associated steatotic liver disease.\",\"authors\":\"Youngshim Choi, Yinyan Ma, Samson Tom, Alla Danilkovitch, Liqing Yu\",\"doi\":\"10.3389/fbioe.2025.1579062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive stage metabolic dysfunction-associated steatohepatitis (MASH) represent a leading cause of liver-related morbidity and mortality in the U.S. and worldwide. Given the high prevalence and rapid growth of MASLD, the economic and health burden, and MASH-associated morbidity and mortality, there is an unmet medical need for therapies that can stop, slow, or reverse the progression of MASLD. Adipose tissue plays a key role in metabolic health and MASLD pathogenesis through its regulation of energy metabolism and endocrine function. Metabolic dysfunction is often associated with a chronic state of low-grade inflammation in the body including adipose tissue.</p><p><strong>Methods: </strong>In this study, we tested an engineered adipose formulation (AF) composed of a combination of culture-expanded adipose stromal vascular fraction (SVF) cells and adipose tissue particulates in the treatment of MASLD. Human, rat, and mouse AFs (hAF, rAF, and mAF) showed anti-inflammatory activity, which was mediated predominantly by soluble factors present in the adipose particulate. <i>In vivo</i> effects of AFs were evaluated in two rodent models of MASLD: i) obese Zucker rats fed a high-fat, high-cholesterol, and high-fructose diet that mainly manifest hepatic steatosis; and ii) liver-specific CGI-58 knockout mice (LivKO) on a Western diet that display MASH pathologies.</p><p><strong>Results: </strong>Subcutaneous implantation of hAF and rAF in obese Zucker rats significantly reduced hepatic triglycerides. In LivKO mice, mAF reduced hepatic inflammation and fibrosis, though not steatosis, as evidenced by significant decreases in hepatic M1 macrophages and mRNAs for proinflammatory and fibrogenic genes. Immunogenicity testing demonstrated that allogeneic rAF did not induce an immune response, whereas, as anticipated, xenogeneic hAF in rats triggered anti-hAF antibody formation. Despite an immune response against xenogeneic hAF, treatment of rats with hAF ameliorated hepatic steatosis.</p><p><strong>Discussion: </strong>AF has the potential to treat MASH. Future studies focused on the optimization of AF composition, optimal dose and treatment regimen are warranted.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1579062\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179120/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1579062\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1579062","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
An engineered adipose formulation decreases hepatic inflammation and fibrosis in a rodent model of metabolic dysfunction-associated steatotic liver disease.
Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive stage metabolic dysfunction-associated steatohepatitis (MASH) represent a leading cause of liver-related morbidity and mortality in the U.S. and worldwide. Given the high prevalence and rapid growth of MASLD, the economic and health burden, and MASH-associated morbidity and mortality, there is an unmet medical need for therapies that can stop, slow, or reverse the progression of MASLD. Adipose tissue plays a key role in metabolic health and MASLD pathogenesis through its regulation of energy metabolism and endocrine function. Metabolic dysfunction is often associated with a chronic state of low-grade inflammation in the body including adipose tissue.
Methods: In this study, we tested an engineered adipose formulation (AF) composed of a combination of culture-expanded adipose stromal vascular fraction (SVF) cells and adipose tissue particulates in the treatment of MASLD. Human, rat, and mouse AFs (hAF, rAF, and mAF) showed anti-inflammatory activity, which was mediated predominantly by soluble factors present in the adipose particulate. In vivo effects of AFs were evaluated in two rodent models of MASLD: i) obese Zucker rats fed a high-fat, high-cholesterol, and high-fructose diet that mainly manifest hepatic steatosis; and ii) liver-specific CGI-58 knockout mice (LivKO) on a Western diet that display MASH pathologies.
Results: Subcutaneous implantation of hAF and rAF in obese Zucker rats significantly reduced hepatic triglycerides. In LivKO mice, mAF reduced hepatic inflammation and fibrosis, though not steatosis, as evidenced by significant decreases in hepatic M1 macrophages and mRNAs for proinflammatory and fibrogenic genes. Immunogenicity testing demonstrated that allogeneic rAF did not induce an immune response, whereas, as anticipated, xenogeneic hAF in rats triggered anti-hAF antibody formation. Despite an immune response against xenogeneic hAF, treatment of rats with hAF ameliorated hepatic steatosis.
Discussion: AF has the potential to treat MASH. Future studies focused on the optimization of AF composition, optimal dose and treatment regimen are warranted.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.