Samia Kausar, Sofia O D Duarte, Ahmed Raza Hashmi, Farwa Zahra, Alia Erum, Shumaila Arshad, Ume Ruqia Tulain, Mulazim Hussain Asim, Pedro Fonte
{"title":"巯基修饰表面修饰表面活性剂链长对黏附纳米结构脂质载体的影响。","authors":"Samia Kausar, Sofia O D Duarte, Ahmed Raza Hashmi, Farwa Zahra, Alia Erum, Shumaila Arshad, Ume Ruqia Tulain, Mulazim Hussain Asim, Pedro Fonte","doi":"10.1007/s13346-025-01905-w","DOIUrl":null,"url":null,"abstract":"<p><p>Nanostructured lipid carriers (NLCs) decorated with sulfhydryl-modified surfactants have recently gained attention for delivering BCS Class IV drugs. However, the impact of the chain-length of these surfactants on the permeation and bioavailability properties of NLCs is still unknown. Therefore, this study investigates the effect of surfactant chain-length on the mucoadhesive, permeation, and bioavailability properties of NLCs. For this purpose, short- and long-chain sulfhydryl-modified polyethoxylated surfactants were generated to develop mucoadhesive NLCs and loaded with the model drug aprepitant (APT). NLCs were characterized and assessed for comprehensive physicochemical and biological evaluations. Moreover, in-vivo studies were performed for proof-of-concept to show enhanced oral drug bioavailability. NLCs showed particle size under 200 nm with 6.9 and 6.7% drug loading and 85 and 84% drug entrapment for short- and long-chain surfactants, respectively. The drug-loaded NLCs were safe and stable, and short- and long-chain surfactants containing NLCs exhibited 11.6- and 9.6-fold enhanced mucoadhesion, respectively. Moreover, in comparison to long-chain sulfhydryl-modified surfactant, short-chain surfactant is transported into deeper segments of mucus due to less interaction with the mucus. Similarly, short-chain sulfhydryl-modified surfactants showed significantly enhanced cellular permeation across Caco-2 cell lines. Furthermore, the long-chain sulfhydryl-modified surfactants showed 4.38-fold enhanced C<sub>max</sub>, whereas due to better diffusion and mucoadhesion properties, the short-chain surfactants exhibited 5.38-fold enhanced C<sub>max</sub>. Similarly, 34.8% relative bioavailability was attained for short-chain surfactants and 24.8% for long-chain surfactants. These results suggest short-chain sulfhydryl surfactants are promising candidates for improving the oral delivery of poorly soluble drugs and warrant further investigation for clinical translation.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of chain-length of sulfhydryl-modified surface-decorated surfactants on mucoadhesive nanostructured lipid carriers.\",\"authors\":\"Samia Kausar, Sofia O D Duarte, Ahmed Raza Hashmi, Farwa Zahra, Alia Erum, Shumaila Arshad, Ume Ruqia Tulain, Mulazim Hussain Asim, Pedro Fonte\",\"doi\":\"10.1007/s13346-025-01905-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanostructured lipid carriers (NLCs) decorated with sulfhydryl-modified surfactants have recently gained attention for delivering BCS Class IV drugs. However, the impact of the chain-length of these surfactants on the permeation and bioavailability properties of NLCs is still unknown. Therefore, this study investigates the effect of surfactant chain-length on the mucoadhesive, permeation, and bioavailability properties of NLCs. For this purpose, short- and long-chain sulfhydryl-modified polyethoxylated surfactants were generated to develop mucoadhesive NLCs and loaded with the model drug aprepitant (APT). NLCs were characterized and assessed for comprehensive physicochemical and biological evaluations. Moreover, in-vivo studies were performed for proof-of-concept to show enhanced oral drug bioavailability. NLCs showed particle size under 200 nm with 6.9 and 6.7% drug loading and 85 and 84% drug entrapment for short- and long-chain surfactants, respectively. The drug-loaded NLCs were safe and stable, and short- and long-chain surfactants containing NLCs exhibited 11.6- and 9.6-fold enhanced mucoadhesion, respectively. Moreover, in comparison to long-chain sulfhydryl-modified surfactant, short-chain surfactant is transported into deeper segments of mucus due to less interaction with the mucus. Similarly, short-chain sulfhydryl-modified surfactants showed significantly enhanced cellular permeation across Caco-2 cell lines. Furthermore, the long-chain sulfhydryl-modified surfactants showed 4.38-fold enhanced C<sub>max</sub>, whereas due to better diffusion and mucoadhesion properties, the short-chain surfactants exhibited 5.38-fold enhanced C<sub>max</sub>. Similarly, 34.8% relative bioavailability was attained for short-chain surfactants and 24.8% for long-chain surfactants. These results suggest short-chain sulfhydryl surfactants are promising candidates for improving the oral delivery of poorly soluble drugs and warrant further investigation for clinical translation.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-025-01905-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01905-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Impact of chain-length of sulfhydryl-modified surface-decorated surfactants on mucoadhesive nanostructured lipid carriers.
Nanostructured lipid carriers (NLCs) decorated with sulfhydryl-modified surfactants have recently gained attention for delivering BCS Class IV drugs. However, the impact of the chain-length of these surfactants on the permeation and bioavailability properties of NLCs is still unknown. Therefore, this study investigates the effect of surfactant chain-length on the mucoadhesive, permeation, and bioavailability properties of NLCs. For this purpose, short- and long-chain sulfhydryl-modified polyethoxylated surfactants were generated to develop mucoadhesive NLCs and loaded with the model drug aprepitant (APT). NLCs were characterized and assessed for comprehensive physicochemical and biological evaluations. Moreover, in-vivo studies were performed for proof-of-concept to show enhanced oral drug bioavailability. NLCs showed particle size under 200 nm with 6.9 and 6.7% drug loading and 85 and 84% drug entrapment for short- and long-chain surfactants, respectively. The drug-loaded NLCs were safe and stable, and short- and long-chain surfactants containing NLCs exhibited 11.6- and 9.6-fold enhanced mucoadhesion, respectively. Moreover, in comparison to long-chain sulfhydryl-modified surfactant, short-chain surfactant is transported into deeper segments of mucus due to less interaction with the mucus. Similarly, short-chain sulfhydryl-modified surfactants showed significantly enhanced cellular permeation across Caco-2 cell lines. Furthermore, the long-chain sulfhydryl-modified surfactants showed 4.38-fold enhanced Cmax, whereas due to better diffusion and mucoadhesion properties, the short-chain surfactants exhibited 5.38-fold enhanced Cmax. Similarly, 34.8% relative bioavailability was attained for short-chain surfactants and 24.8% for long-chain surfactants. These results suggest short-chain sulfhydryl surfactants are promising candidates for improving the oral delivery of poorly soluble drugs and warrant further investigation for clinical translation.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.