{"title":"母亲电子烟暴露通过氧化应激/DNA甲基化诱导肺动脉高压后代自噬失调","authors":"Ze-Wen Chen, Yi-Fan Li, Hai-Long Qiu, Wen Xie, Tian-Yu Chen, Yong Zhang, Ji-Mei Chen, Jian Zhuang, Shu-Sheng Wen","doi":"10.1007/s11596-025-00074-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Electronic cigarettes (ECs) differ from traditional tobacco smoke but may contribute to cardiopulmonary remodeling. Pulmonary hypertension (PH), characterized by pulmonary artery and right ventricle remodeling, poses a significant risk of mortality in infants, children, and adolescents. However, the impact of maternal EC exposure on PH development in offspring remains unclear. To address this, we established a PH rat model with maternal EC exposure.</p><p><strong>Methods: </strong>Maternal EC exposure was initiated on gestation day 12 via electronic nicotine delivery systems. Offspring were administered monocrotaline (MCT) at 6 weeks of age (6-wo) to induce PH. Mechanistic experiments were conducted at 10-week-old (10-wo). Protein expression of NADPH oxidases, DNA methyltransferases, and autophagy-related markers was analyzed by Western blot. Morphological changes and the severity of PH were evaluated via hematoxylin and eosin (HE) staining and echocardiography, respectively. Furthermore, the involvement of the oxidative stress/DNA methylation/autophagy axis in response to maternal EC exposure was confirmed through a combination of ELISA, Western blot, HE staining, and echocardiography. Additionally, ATG5 mRNA expression was measured by qRT-PCR.</p><p><strong>Results: </strong>Compared with control conditions, maternal EC exposure significantly worsened MCT-induced PH in male offspring. This was associated with increased oxidative stress, DNA hypomethylation, and anomalous autophagy in the offspring. In vivo treatment with chloroquine inhibited autophagy and ameliorated PH development in offspring exposed to maternal EC. Furthermore, N-acetylcysteine (NAC), an antioxidant, attenuated maternal EC exposure-induced oxidative stress, DNA hypomethylation, and excessive autophagy, thereby improving PH. DNA hypermethylation also reversed PH development, accompanied by reduced oxidative stress and suppressed autophagy. ATG5, a key regulator of autophagy, was identified as a potential therapeutic target, as its repression mitigated PH in maternal EC-exposed offspring.</p><p><strong>Conclusion: </strong>Maternal EC exposure induces oxidative stress and DNA hypomethylation in offspring, leading to anomalous autophagy and exacerbation of PH development. Targeting ATG5-mediated autophagy may represent a novel therapeutic approach for improving PH outcomes in offspring exposed to maternal EC.</p>","PeriodicalId":10820,"journal":{"name":"Current Medical Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maternal Electronic Cigarette Exposure Induces Dysregulation of Autophagy via Oxidative Stress/DNA Methylation in Pulmonary Hypertension Offspring.\",\"authors\":\"Ze-Wen Chen, Yi-Fan Li, Hai-Long Qiu, Wen Xie, Tian-Yu Chen, Yong Zhang, Ji-Mei Chen, Jian Zhuang, Shu-Sheng Wen\",\"doi\":\"10.1007/s11596-025-00074-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Electronic cigarettes (ECs) differ from traditional tobacco smoke but may contribute to cardiopulmonary remodeling. Pulmonary hypertension (PH), characterized by pulmonary artery and right ventricle remodeling, poses a significant risk of mortality in infants, children, and adolescents. However, the impact of maternal EC exposure on PH development in offspring remains unclear. To address this, we established a PH rat model with maternal EC exposure.</p><p><strong>Methods: </strong>Maternal EC exposure was initiated on gestation day 12 via electronic nicotine delivery systems. Offspring were administered monocrotaline (MCT) at 6 weeks of age (6-wo) to induce PH. Mechanistic experiments were conducted at 10-week-old (10-wo). Protein expression of NADPH oxidases, DNA methyltransferases, and autophagy-related markers was analyzed by Western blot. Morphological changes and the severity of PH were evaluated via hematoxylin and eosin (HE) staining and echocardiography, respectively. Furthermore, the involvement of the oxidative stress/DNA methylation/autophagy axis in response to maternal EC exposure was confirmed through a combination of ELISA, Western blot, HE staining, and echocardiography. Additionally, ATG5 mRNA expression was measured by qRT-PCR.</p><p><strong>Results: </strong>Compared with control conditions, maternal EC exposure significantly worsened MCT-induced PH in male offspring. This was associated with increased oxidative stress, DNA hypomethylation, and anomalous autophagy in the offspring. In vivo treatment with chloroquine inhibited autophagy and ameliorated PH development in offspring exposed to maternal EC. Furthermore, N-acetylcysteine (NAC), an antioxidant, attenuated maternal EC exposure-induced oxidative stress, DNA hypomethylation, and excessive autophagy, thereby improving PH. DNA hypermethylation also reversed PH development, accompanied by reduced oxidative stress and suppressed autophagy. ATG5, a key regulator of autophagy, was identified as a potential therapeutic target, as its repression mitigated PH in maternal EC-exposed offspring.</p><p><strong>Conclusion: </strong>Maternal EC exposure induces oxidative stress and DNA hypomethylation in offspring, leading to anomalous autophagy and exacerbation of PH development. Targeting ATG5-mediated autophagy may represent a novel therapeutic approach for improving PH outcomes in offspring exposed to maternal EC.</p>\",\"PeriodicalId\":10820,\"journal\":{\"name\":\"Current Medical Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11596-025-00074-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11596-025-00074-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Maternal Electronic Cigarette Exposure Induces Dysregulation of Autophagy via Oxidative Stress/DNA Methylation in Pulmonary Hypertension Offspring.
Objective: Electronic cigarettes (ECs) differ from traditional tobacco smoke but may contribute to cardiopulmonary remodeling. Pulmonary hypertension (PH), characterized by pulmonary artery and right ventricle remodeling, poses a significant risk of mortality in infants, children, and adolescents. However, the impact of maternal EC exposure on PH development in offspring remains unclear. To address this, we established a PH rat model with maternal EC exposure.
Methods: Maternal EC exposure was initiated on gestation day 12 via electronic nicotine delivery systems. Offspring were administered monocrotaline (MCT) at 6 weeks of age (6-wo) to induce PH. Mechanistic experiments were conducted at 10-week-old (10-wo). Protein expression of NADPH oxidases, DNA methyltransferases, and autophagy-related markers was analyzed by Western blot. Morphological changes and the severity of PH were evaluated via hematoxylin and eosin (HE) staining and echocardiography, respectively. Furthermore, the involvement of the oxidative stress/DNA methylation/autophagy axis in response to maternal EC exposure was confirmed through a combination of ELISA, Western blot, HE staining, and echocardiography. Additionally, ATG5 mRNA expression was measured by qRT-PCR.
Results: Compared with control conditions, maternal EC exposure significantly worsened MCT-induced PH in male offspring. This was associated with increased oxidative stress, DNA hypomethylation, and anomalous autophagy in the offspring. In vivo treatment with chloroquine inhibited autophagy and ameliorated PH development in offspring exposed to maternal EC. Furthermore, N-acetylcysteine (NAC), an antioxidant, attenuated maternal EC exposure-induced oxidative stress, DNA hypomethylation, and excessive autophagy, thereby improving PH. DNA hypermethylation also reversed PH development, accompanied by reduced oxidative stress and suppressed autophagy. ATG5, a key regulator of autophagy, was identified as a potential therapeutic target, as its repression mitigated PH in maternal EC-exposed offspring.
Conclusion: Maternal EC exposure induces oxidative stress and DNA hypomethylation in offspring, leading to anomalous autophagy and exacerbation of PH development. Targeting ATG5-mediated autophagy may represent a novel therapeutic approach for improving PH outcomes in offspring exposed to maternal EC.
期刊介绍:
Current Medical Science provides a forum for peer-reviewed papers in the medical sciences, to promote academic exchange between Chinese researchers and doctors and their foreign counterparts. The journal covers the subjects of biomedicine such as physiology, biochemistry, molecular biology, pharmacology, pathology and pathophysiology, etc., and clinical research, such as surgery, internal medicine, obstetrics and gynecology, pediatrics and otorhinolaryngology etc. The articles appearing in Current Medical Science are mainly in English, with a very small number of its papers in German, to pay tribute to its German founder. This journal is the only medical periodical in Western languages sponsored by an educational institution located in the central part of China.