{"title":"棕榈酰化调节因子通过抑制铜增生驱动透明细胞肾细胞癌的进展:对ZDHHC18作用的见解。","authors":"Wei Xu, Xiao-Chao Chen, Yang Wang, Jian-Chun Chen, Zhi-Jun Cao, Ru Huang, Chao Chen, Dao-Rong Hou, Min-Jun Jiang, Chen Xu","doi":"10.1186/s12935-025-03882-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Protein palmitoylation is a reversible post-translational modification that increases protein hydrophobicity, which can affect protein localization, stability, and function. Although palmitoylation is frequently observed in various cancers, the specific mechanisms by which it influences clear cell renal cell carcinoma (ccRCC) are still not well understood.</p><p><strong>Methods: </strong>This study used transcriptome expression profiles and clinical characteristics of clear cell renal cell carcinoma (ccRCC) obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Kaplan-Meier (KM) survival analysis was performed to evaluate patient survival. Consensus clustering was applied to identify tumor palmitoylation patterns. A total of 101 different machine learning methods were used to develop predictive models. Functional enrichment analyses were conducted using Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Set Variation Analysis (GSVA).</p><p><strong>Results: </strong>Of the 34 prognosis-related palmitoylation-related genes (PRGs), 29 were used to cluster patients in the TCGA-KIRC cohort, leading to the identification of four palmitoylation clusters. We developed a risk model and a nomogram based on palmitoylation scores to enhance risk classification. Functional analysis indicated that high-risk patients exhibited disrupted fatty acid metabolism. Correlation analysis identified ZDHHC18 as a potential hub gene associated with impaired fatty acid metabolism and cuproptosis. Finally, we validated the role of ZDHHC18 in ccRCC proliferation through in vitro experiments.</p><p><strong>Conclusion: </strong>Our research demonstrated that PRGs play a crucial role in the development of clear cell renal cell carcinoma (ccRCC). A nomogram based on palmitoylation scores may accurately predict the prognosis of ccRCC patients. Furthermore, the palmitoylation regulator ZDHHC18 affects cuproptosis in ccRCC, which in turn impacts patient survival.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"230"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12186379/pdf/","citationCount":"0","resultStr":"{\"title\":\"Palmitoylation regulators drive the progression of clear cell renal cell carcinoma through Inhibition of cuproptosis: insights into the role of ZDHHC18.\",\"authors\":\"Wei Xu, Xiao-Chao Chen, Yang Wang, Jian-Chun Chen, Zhi-Jun Cao, Ru Huang, Chao Chen, Dao-Rong Hou, Min-Jun Jiang, Chen Xu\",\"doi\":\"10.1186/s12935-025-03882-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Protein palmitoylation is a reversible post-translational modification that increases protein hydrophobicity, which can affect protein localization, stability, and function. Although palmitoylation is frequently observed in various cancers, the specific mechanisms by which it influences clear cell renal cell carcinoma (ccRCC) are still not well understood.</p><p><strong>Methods: </strong>This study used transcriptome expression profiles and clinical characteristics of clear cell renal cell carcinoma (ccRCC) obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Kaplan-Meier (KM) survival analysis was performed to evaluate patient survival. Consensus clustering was applied to identify tumor palmitoylation patterns. A total of 101 different machine learning methods were used to develop predictive models. Functional enrichment analyses were conducted using Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Set Variation Analysis (GSVA).</p><p><strong>Results: </strong>Of the 34 prognosis-related palmitoylation-related genes (PRGs), 29 were used to cluster patients in the TCGA-KIRC cohort, leading to the identification of four palmitoylation clusters. We developed a risk model and a nomogram based on palmitoylation scores to enhance risk classification. Functional analysis indicated that high-risk patients exhibited disrupted fatty acid metabolism. Correlation analysis identified ZDHHC18 as a potential hub gene associated with impaired fatty acid metabolism and cuproptosis. Finally, we validated the role of ZDHHC18 in ccRCC proliferation through in vitro experiments.</p><p><strong>Conclusion: </strong>Our research demonstrated that PRGs play a crucial role in the development of clear cell renal cell carcinoma (ccRCC). A nomogram based on palmitoylation scores may accurately predict the prognosis of ccRCC patients. Furthermore, the palmitoylation regulator ZDHHC18 affects cuproptosis in ccRCC, which in turn impacts patient survival.</p>\",\"PeriodicalId\":9385,\"journal\":{\"name\":\"Cancer Cell International\",\"volume\":\"25 1\",\"pages\":\"230\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12186379/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12935-025-03882-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03882-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Palmitoylation regulators drive the progression of clear cell renal cell carcinoma through Inhibition of cuproptosis: insights into the role of ZDHHC18.
Background: Protein palmitoylation is a reversible post-translational modification that increases protein hydrophobicity, which can affect protein localization, stability, and function. Although palmitoylation is frequently observed in various cancers, the specific mechanisms by which it influences clear cell renal cell carcinoma (ccRCC) are still not well understood.
Methods: This study used transcriptome expression profiles and clinical characteristics of clear cell renal cell carcinoma (ccRCC) obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Kaplan-Meier (KM) survival analysis was performed to evaluate patient survival. Consensus clustering was applied to identify tumor palmitoylation patterns. A total of 101 different machine learning methods were used to develop predictive models. Functional enrichment analyses were conducted using Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Set Variation Analysis (GSVA).
Results: Of the 34 prognosis-related palmitoylation-related genes (PRGs), 29 were used to cluster patients in the TCGA-KIRC cohort, leading to the identification of four palmitoylation clusters. We developed a risk model and a nomogram based on palmitoylation scores to enhance risk classification. Functional analysis indicated that high-risk patients exhibited disrupted fatty acid metabolism. Correlation analysis identified ZDHHC18 as a potential hub gene associated with impaired fatty acid metabolism and cuproptosis. Finally, we validated the role of ZDHHC18 in ccRCC proliferation through in vitro experiments.
Conclusion: Our research demonstrated that PRGs play a crucial role in the development of clear cell renal cell carcinoma (ccRCC). A nomogram based on palmitoylation scores may accurately predict the prognosis of ccRCC patients. Furthermore, the palmitoylation regulator ZDHHC18 affects cuproptosis in ccRCC, which in turn impacts patient survival.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.