Caixia Hou, Sylvie Garneau-Tsodikova, Oleg V Tsodikov
{"title":"氯四环素生物合成途径中卤素酶CtcP和FAD还原酶CtcQ的晶体结构和低亲和力复合物的形成。","authors":"Caixia Hou, Sylvie Garneau-Tsodikova, Oleg V Tsodikov","doi":"10.1042/BSR20253185","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymatic halogenation in natural products has been intensely investigated due to its potential utility as a tool to improve pharmacological and pharmaceutical properties of drug leads. Chlortetracycline (CTC), the first tetracycline (TC) antibiotic discovered nearly eight decades ago, contains a chlorine group. This chlorine is installed enzymatically by the flavin adenine dinucleotide (FAD)-dependent halogenase CtcP. CtcP and the FAD reductase CtcQ, which is also encoded in the CTC biosynthetic gene cluster, function as a two-component system. Structural information on CtcP and CtcQ has been lacking. In this study, we determined crystal structures of CtcP from Kitasatospora aureofaciens in a complex with polyethylene glycol and sulfate ions and in a complex with FAD, and a crystal structure of CtcQ in a complex with FAD and NAD. The structures of CtcP revealed a close similarity of this enzyme to the phenolic halogenase PltM, despite a large difference in the sizes of their respective substrates, presumably TC and phloroglucinol. The CtcP structure showed a conserved dimeric organization also found in PltM crystals. We showed that dimerization of CtcP is allosterically influenced by a distant C-terminal helical hairpin. A closed substrate-binding cavity of CtcP suggested that conformational changes were required to allow a substrate, likely not TC, to bind CtcP. We demonstrated that CtcP and CtcQ weakly bound each other. The dimeric structures of CtcP and CtcQ prompted us to propose approximate models of a 2:2/CtcP:CtcQ complex, where FAD(H2) would shuttle between the two enzymes for chlorination and reduction.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal structures and low-affinity complex formation of halogenase CtcP and FAD reductase CtcQ from the chlortetracycline biosynthetic pathway.\",\"authors\":\"Caixia Hou, Sylvie Garneau-Tsodikova, Oleg V Tsodikov\",\"doi\":\"10.1042/BSR20253185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enzymatic halogenation in natural products has been intensely investigated due to its potential utility as a tool to improve pharmacological and pharmaceutical properties of drug leads. Chlortetracycline (CTC), the first tetracycline (TC) antibiotic discovered nearly eight decades ago, contains a chlorine group. This chlorine is installed enzymatically by the flavin adenine dinucleotide (FAD)-dependent halogenase CtcP. CtcP and the FAD reductase CtcQ, which is also encoded in the CTC biosynthetic gene cluster, function as a two-component system. Structural information on CtcP and CtcQ has been lacking. In this study, we determined crystal structures of CtcP from Kitasatospora aureofaciens in a complex with polyethylene glycol and sulfate ions and in a complex with FAD, and a crystal structure of CtcQ in a complex with FAD and NAD. The structures of CtcP revealed a close similarity of this enzyme to the phenolic halogenase PltM, despite a large difference in the sizes of their respective substrates, presumably TC and phloroglucinol. The CtcP structure showed a conserved dimeric organization also found in PltM crystals. We showed that dimerization of CtcP is allosterically influenced by a distant C-terminal helical hairpin. A closed substrate-binding cavity of CtcP suggested that conformational changes were required to allow a substrate, likely not TC, to bind CtcP. We demonstrated that CtcP and CtcQ weakly bound each other. The dimeric structures of CtcP and CtcQ prompted us to propose approximate models of a 2:2/CtcP:CtcQ complex, where FAD(H2) would shuttle between the two enzymes for chlorination and reduction.</p>\",\"PeriodicalId\":8926,\"journal\":{\"name\":\"Bioscience Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BSR20253185\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20253185","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Crystal structures and low-affinity complex formation of halogenase CtcP and FAD reductase CtcQ from the chlortetracycline biosynthetic pathway.
Enzymatic halogenation in natural products has been intensely investigated due to its potential utility as a tool to improve pharmacological and pharmaceutical properties of drug leads. Chlortetracycline (CTC), the first tetracycline (TC) antibiotic discovered nearly eight decades ago, contains a chlorine group. This chlorine is installed enzymatically by the flavin adenine dinucleotide (FAD)-dependent halogenase CtcP. CtcP and the FAD reductase CtcQ, which is also encoded in the CTC biosynthetic gene cluster, function as a two-component system. Structural information on CtcP and CtcQ has been lacking. In this study, we determined crystal structures of CtcP from Kitasatospora aureofaciens in a complex with polyethylene glycol and sulfate ions and in a complex with FAD, and a crystal structure of CtcQ in a complex with FAD and NAD. The structures of CtcP revealed a close similarity of this enzyme to the phenolic halogenase PltM, despite a large difference in the sizes of their respective substrates, presumably TC and phloroglucinol. The CtcP structure showed a conserved dimeric organization also found in PltM crystals. We showed that dimerization of CtcP is allosterically influenced by a distant C-terminal helical hairpin. A closed substrate-binding cavity of CtcP suggested that conformational changes were required to allow a substrate, likely not TC, to bind CtcP. We demonstrated that CtcP and CtcQ weakly bound each other. The dimeric structures of CtcP and CtcQ prompted us to propose approximate models of a 2:2/CtcP:CtcQ complex, where FAD(H2) would shuttle between the two enzymes for chlorination and reduction.
期刊介绍:
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase.
Articles are assessed on soundness, providing a home for valid findings and data.
We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing:
-new methodologies
-tools and reagents to probe biological questions
-mechanistic details
-disease mechanisms
-metabolic processes and their regulation
-structure and function
-bioenergetics