生命检测知识库:知识管理与表达的社区工具。

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Astrobiology Pub Date : 2025-06-24 DOI:10.1089/ast.2024.0106
Andrew Pohorille, Graham Lau, Stanislaw Gliniewicz, Alfonso Davila, Niki Parenteau, David Des Marais, Richard Quinn, Svetlana Shkolyar, Richard Everroad, Tori Hoehler
{"title":"生命检测知识库:知识管理与表达的社区工具。","authors":"Andrew Pohorille, Graham Lau, Stanislaw Gliniewicz, Alfonso Davila, Niki Parenteau, David Des Marais, Richard Quinn, Svetlana Shkolyar, Richard Everroad, Tori Hoehler","doi":"10.1089/ast.2024.0106","DOIUrl":null,"url":null,"abstract":"<p><p>The Life Detection Knowledge Base (LDKB; https://lifedetectionforum.com/ldkb) is a community-owned web resource that is designed to facilitate the infusion of astrobiology knowledge and expertise into the conceptualization and design of life detection missions. The aim of the LDKB is to gather and organize diverse knowledge from a range of fields into a common reference frame to support mission science risk assessment, specifically in terms of the potential for false positive and false negative results when pursuing a particular observation strategy. Within the LDKB, knowledge sourced from the primary scientific literature is organized according to (1) a taxonomic classification scheme in which potential biosignatures are defined at a uniform level of granularity that corresponds to observable physical or chemical quantities, qualities, or states; (2) a set of four standard assessment criteria, uniformly applied to each potential biosignature, that target the factors that contribute to false positive and false negative potential; and (3) a discourse format that utilizes customizable, user-defined \"arguments\" to represent the essential aspects of relevant scientific literature in terms of their specific bearing on one of the four assessment criteria, and thereby on false positive and false negative potential. By mapping available and newly emerging knowledge into this standardized framework, we can identify areas where the current state of knowledge supports a well-informed science risk assessment as well as critical knowledge gaps where focused research could help flesh out and mature promising life detection approaches.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life Detection Knowledge Base: A Community Tool for Knowledge Management and Representation.\",\"authors\":\"Andrew Pohorille, Graham Lau, Stanislaw Gliniewicz, Alfonso Davila, Niki Parenteau, David Des Marais, Richard Quinn, Svetlana Shkolyar, Richard Everroad, Tori Hoehler\",\"doi\":\"10.1089/ast.2024.0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Life Detection Knowledge Base (LDKB; https://lifedetectionforum.com/ldkb) is a community-owned web resource that is designed to facilitate the infusion of astrobiology knowledge and expertise into the conceptualization and design of life detection missions. The aim of the LDKB is to gather and organize diverse knowledge from a range of fields into a common reference frame to support mission science risk assessment, specifically in terms of the potential for false positive and false negative results when pursuing a particular observation strategy. Within the LDKB, knowledge sourced from the primary scientific literature is organized according to (1) a taxonomic classification scheme in which potential biosignatures are defined at a uniform level of granularity that corresponds to observable physical or chemical quantities, qualities, or states; (2) a set of four standard assessment criteria, uniformly applied to each potential biosignature, that target the factors that contribute to false positive and false negative potential; and (3) a discourse format that utilizes customizable, user-defined \\\"arguments\\\" to represent the essential aspects of relevant scientific literature in terms of their specific bearing on one of the four assessment criteria, and thereby on false positive and false negative potential. By mapping available and newly emerging knowledge into this standardized framework, we can identify areas where the current state of knowledge supports a well-informed science risk assessment as well as critical knowledge gaps where focused research could help flesh out and mature promising life detection approaches.</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1089/ast.2024.0106\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0106","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

生命探测知识库;https://lifedetectionforum.com/ldkb)是一个社区拥有的网络资源,旨在促进将天体生物学知识和专业知识注入生命探测任务的概念化和设计中。LDKB的目的是收集和组织来自一系列领域的各种知识,形成一个共同的参考框架,以支持任务科学风险评估,特别是在执行特定观测策略时假阳性和假阴性结果的可能性方面。在LDKB中,来自主要科学文献的知识根据(1)分类方案进行组织,其中潜在的生物特征在统一的粒度级别上定义,对应于可观察到的物理或化学量、质量或状态;(2)一套四个标准的评估标准,统一应用于每个潜在的生物签名,针对导致假阳性和假阴性潜在的因素;(3)一种话语格式,利用可定制的、用户自定义的“论据”来代表相关科学文献的基本方面,根据它们对四个评估标准之一的具体影响,从而影响假阳性和假阴性的可能性。通过将现有的和新出现的知识映射到这个标准化框架中,我们可以确定当前知识状态支持充分知情的科学风险评估的领域,以及关键的知识空白,重点研究可以帮助充实和成熟有前途的生命探测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Life Detection Knowledge Base: A Community Tool for Knowledge Management and Representation.

The Life Detection Knowledge Base (LDKB; https://lifedetectionforum.com/ldkb) is a community-owned web resource that is designed to facilitate the infusion of astrobiology knowledge and expertise into the conceptualization and design of life detection missions. The aim of the LDKB is to gather and organize diverse knowledge from a range of fields into a common reference frame to support mission science risk assessment, specifically in terms of the potential for false positive and false negative results when pursuing a particular observation strategy. Within the LDKB, knowledge sourced from the primary scientific literature is organized according to (1) a taxonomic classification scheme in which potential biosignatures are defined at a uniform level of granularity that corresponds to observable physical or chemical quantities, qualities, or states; (2) a set of four standard assessment criteria, uniformly applied to each potential biosignature, that target the factors that contribute to false positive and false negative potential; and (3) a discourse format that utilizes customizable, user-defined "arguments" to represent the essential aspects of relevant scientific literature in terms of their specific bearing on one of the four assessment criteria, and thereby on false positive and false negative potential. By mapping available and newly emerging knowledge into this standardized framework, we can identify areas where the current state of knowledge supports a well-informed science risk assessment as well as critical knowledge gaps where focused research could help flesh out and mature promising life detection approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信