{"title":"用于ct引导的介入放射学报告分类的微调大语言模型。","authors":"Koichiro Yasaka, Naoaki Nishimura, Takahiro Fukushima, Takatoshi Kubo, Shigeru Kiryu, Osamu Abe","doi":"10.1177/02841851251349495","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundManual data curation was necessary to extract radiology reports due to the ambiguities of natural language.PurposeTo develop a fine-tuned large language model that classifies computed tomography (CT)-guided interventional radiology reports into technique categories and to compare its performance with that of the readers.Material and MethodsThis retrospective study included patients who underwent CT-guided interventional radiology between August 2008 and November 2024. Patients were chronologically assigned to the training (n = 1142; 646 men; mean age = 64.1 ± 15.7 years), validation (n = 131; 83 men; mean age = 66.1 ± 16.1 years), and test (n = 332; 196 men; mean age = 66.1 ± 14.8 years) datasets. In establishing a reference standard, reports were manually classified into categories 1 (drainage), 2 (lesion biopsy within fat or soft tissue density tissues), 3 (lung biopsy), and 4 (bone biopsy). The bi-directional encoder representation from the transformers model was fine-tuned with the training dataset, and the model with the best performance in the validation dataset was selected. The performance and required time for classification in the test dataset were compared between the best-performing model and the two readers.ResultsCategories 1/2/3/4 included 309/367/270/196, 30/42/40/19, and 75/124/78/55 patients for the training, validation, and test datasets, respectively. The model demonstrated an accuracy of 0.979 in the test dataset, which was significantly better than that of the readers (0.922-0.940) (<i>P</i> ≤0.012). The model classified reports within a 49.8-53.5-fold shorter time compared to readers.ConclusionThe fine-tuned large language model classified CT-guided interventional radiology reports into four categories demonstrating high accuracy within a remarkably short time.</p>","PeriodicalId":7143,"journal":{"name":"Acta radiologica","volume":" ","pages":"2841851251349495"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-tuned large language model for classifying CT-guided interventional radiology reports.\",\"authors\":\"Koichiro Yasaka, Naoaki Nishimura, Takahiro Fukushima, Takatoshi Kubo, Shigeru Kiryu, Osamu Abe\",\"doi\":\"10.1177/02841851251349495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundManual data curation was necessary to extract radiology reports due to the ambiguities of natural language.PurposeTo develop a fine-tuned large language model that classifies computed tomography (CT)-guided interventional radiology reports into technique categories and to compare its performance with that of the readers.Material and MethodsThis retrospective study included patients who underwent CT-guided interventional radiology between August 2008 and November 2024. Patients were chronologically assigned to the training (n = 1142; 646 men; mean age = 64.1 ± 15.7 years), validation (n = 131; 83 men; mean age = 66.1 ± 16.1 years), and test (n = 332; 196 men; mean age = 66.1 ± 14.8 years) datasets. In establishing a reference standard, reports were manually classified into categories 1 (drainage), 2 (lesion biopsy within fat or soft tissue density tissues), 3 (lung biopsy), and 4 (bone biopsy). The bi-directional encoder representation from the transformers model was fine-tuned with the training dataset, and the model with the best performance in the validation dataset was selected. The performance and required time for classification in the test dataset were compared between the best-performing model and the two readers.ResultsCategories 1/2/3/4 included 309/367/270/196, 30/42/40/19, and 75/124/78/55 patients for the training, validation, and test datasets, respectively. The model demonstrated an accuracy of 0.979 in the test dataset, which was significantly better than that of the readers (0.922-0.940) (<i>P</i> ≤0.012). The model classified reports within a 49.8-53.5-fold shorter time compared to readers.ConclusionThe fine-tuned large language model classified CT-guided interventional radiology reports into four categories demonstrating high accuracy within a remarkably short time.</p>\",\"PeriodicalId\":7143,\"journal\":{\"name\":\"Acta radiologica\",\"volume\":\" \",\"pages\":\"2841851251349495\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta radiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/02841851251349495\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta radiologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/02841851251349495","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Fine-tuned large language model for classifying CT-guided interventional radiology reports.
BackgroundManual data curation was necessary to extract radiology reports due to the ambiguities of natural language.PurposeTo develop a fine-tuned large language model that classifies computed tomography (CT)-guided interventional radiology reports into technique categories and to compare its performance with that of the readers.Material and MethodsThis retrospective study included patients who underwent CT-guided interventional radiology between August 2008 and November 2024. Patients were chronologically assigned to the training (n = 1142; 646 men; mean age = 64.1 ± 15.7 years), validation (n = 131; 83 men; mean age = 66.1 ± 16.1 years), and test (n = 332; 196 men; mean age = 66.1 ± 14.8 years) datasets. In establishing a reference standard, reports were manually classified into categories 1 (drainage), 2 (lesion biopsy within fat or soft tissue density tissues), 3 (lung biopsy), and 4 (bone biopsy). The bi-directional encoder representation from the transformers model was fine-tuned with the training dataset, and the model with the best performance in the validation dataset was selected. The performance and required time for classification in the test dataset were compared between the best-performing model and the two readers.ResultsCategories 1/2/3/4 included 309/367/270/196, 30/42/40/19, and 75/124/78/55 patients for the training, validation, and test datasets, respectively. The model demonstrated an accuracy of 0.979 in the test dataset, which was significantly better than that of the readers (0.922-0.940) (P ≤0.012). The model classified reports within a 49.8-53.5-fold shorter time compared to readers.ConclusionThe fine-tuned large language model classified CT-guided interventional radiology reports into four categories demonstrating high accuracy within a remarkably short time.
期刊介绍:
Acta Radiologica publishes articles on all aspects of radiology, from clinical radiology to experimental work. It is known for articles based on experimental work and contrast media research, giving priority to scientific original papers. The distinguished international editorial board also invite review articles, short communications and technical and instrumental notes.