Jie Sheng, Qin Lin, Yizhuo Sun, Yilei Meng, Sangyu Hu, Huaming Cao, Fang Lin, Yuping Zhu, Luying Peng, Li Li
{"title":"LncRNA Foxo6os作为新的“支架”介导MYBPC3对抗病理性心脏肥厚和心力衰竭","authors":"Jie Sheng, Qin Lin, Yizhuo Sun, Yilei Meng, Sangyu Hu, Huaming Cao, Fang Lin, Yuping Zhu, Luying Peng, Li Li","doi":"10.1002/advs.202507365","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure (HF) as the terminal stage of various cardiac diseases, its underlying molecular mechanisms still remain elusive. Emerging evidence have implicated long noncoding RNAs (lncRNAs) play a multifaceted role in the progression of cardiac hypertrophy and HF. Here, it is identified that a lncRNA forkhead box O6, opposite strand (Foxo6os) is significantly downregulated in murine HF model induced using transverse aortic constriction (TAC). Knockdown of Foxo6os accelerates cardiomyocyte hypertrophy, reflects as elevated expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and myosin heavy chain 7 (MYH7). Conversely, Foxo6os overexpression can improve cardiac function and alleviate adverse cardiac remodeling. Mechanistically, Foxo6os directly interacts with myosin-binding protein-C (MYBPC3), which then recruits protein kinase C alpha (PKC-α) to facilitate MYBPC3 phosphorylation, resulting in maintaining myocardial contractility and postponing HF progression. Therefore, these findings underscore the critical role of Foxo6os in preserving cardiomyocyte contractile function, suggesting a potential for Foxo6os as a novel therapeutic target of HF.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e07365"},"PeriodicalIF":14.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12442697/pdf/","citationCount":"0","resultStr":"{\"title\":\"LncRNA Foxo6os as a Novel \\\" Scaffold\\\" Mediates MYBPC3 in Combating Pathological Cardiac Hypertrophy and Heart Failure.\",\"authors\":\"Jie Sheng, Qin Lin, Yizhuo Sun, Yilei Meng, Sangyu Hu, Huaming Cao, Fang Lin, Yuping Zhu, Luying Peng, Li Li\",\"doi\":\"10.1002/advs.202507365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart failure (HF) as the terminal stage of various cardiac diseases, its underlying molecular mechanisms still remain elusive. Emerging evidence have implicated long noncoding RNAs (lncRNAs) play a multifaceted role in the progression of cardiac hypertrophy and HF. Here, it is identified that a lncRNA forkhead box O6, opposite strand (Foxo6os) is significantly downregulated in murine HF model induced using transverse aortic constriction (TAC). Knockdown of Foxo6os accelerates cardiomyocyte hypertrophy, reflects as elevated expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and myosin heavy chain 7 (MYH7). Conversely, Foxo6os overexpression can improve cardiac function and alleviate adverse cardiac remodeling. Mechanistically, Foxo6os directly interacts with myosin-binding protein-C (MYBPC3), which then recruits protein kinase C alpha (PKC-α) to facilitate MYBPC3 phosphorylation, resulting in maintaining myocardial contractility and postponing HF progression. Therefore, these findings underscore the critical role of Foxo6os in preserving cardiomyocyte contractile function, suggesting a potential for Foxo6os as a novel therapeutic target of HF.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e07365\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12442697/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202507365\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202507365","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
LncRNA Foxo6os as a Novel " Scaffold" Mediates MYBPC3 in Combating Pathological Cardiac Hypertrophy and Heart Failure.
Heart failure (HF) as the terminal stage of various cardiac diseases, its underlying molecular mechanisms still remain elusive. Emerging evidence have implicated long noncoding RNAs (lncRNAs) play a multifaceted role in the progression of cardiac hypertrophy and HF. Here, it is identified that a lncRNA forkhead box O6, opposite strand (Foxo6os) is significantly downregulated in murine HF model induced using transverse aortic constriction (TAC). Knockdown of Foxo6os accelerates cardiomyocyte hypertrophy, reflects as elevated expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and myosin heavy chain 7 (MYH7). Conversely, Foxo6os overexpression can improve cardiac function and alleviate adverse cardiac remodeling. Mechanistically, Foxo6os directly interacts with myosin-binding protein-C (MYBPC3), which then recruits protein kinase C alpha (PKC-α) to facilitate MYBPC3 phosphorylation, resulting in maintaining myocardial contractility and postponing HF progression. Therefore, these findings underscore the critical role of Foxo6os in preserving cardiomyocyte contractile function, suggesting a potential for Foxo6os as a novel therapeutic target of HF.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.