笼形结构中空-介孔微反应器约束萃取剂用于盐湖卤水锂回收。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-23 DOI:10.1002/cssc.202500818
Enze Li, Yudi Gong, Zelong Li, Qiancheng Xia, Guandao Gao, Zihe Pan, Zhaozan Xu, Fangqin Cheng
{"title":"笼形结构中空-介孔微反应器约束萃取剂用于盐湖卤水锂回收。","authors":"Enze Li, Yudi Gong, Zelong Li, Qiancheng Xia, Guandao Gao, Zihe Pan, Zhaozan Xu, Fangqin Cheng","doi":"10.1002/cssc.202500818","DOIUrl":null,"url":null,"abstract":"<p><p>The sustainable and efficient lithium supply can effectively support the global energy transformation toward decarbonization and the development of electrified industries. However, current established solvent extraction technology suffers from extractant dissolution and low efficiency. Herein, a stable cage structural hollow-mesoporous microreactor with the confinement of lithium extractant, Na[FeCl<sub>4</sub>·2TBP], in the hollow cavity is developed for enhancing lithium separation from salt-lake brine. Resultantly, the confinement effect can compartmentalize extractant into micron-sized droplets and prevent its dissolution into aqueous phase. The obtained hollow-mesoporous microreactor exerts outstanding separation performance of Li<sup>+</sup> from brine, even at Mg/Li mass ratio up to 100:1, with high cyclic stability, adsorption quantity of 34.6 mg g<sup>-1</sup>, and Li<sup>+</sup>/Mg<sup>2+</sup> selectivity of nearly 1000 which is about six times higher than that for conventional extraction by Na[FeCl<sub>4</sub>·2TBP]. The mesopores within shells serve as Li<sup>+</sup> transport channels before reaction with the extractant confined in the hollow cavity. In this article, it is propose that the interfacial electric field generated by surface charges of mesopores can enhance Li<sup>+</sup> dehydration and diffusion, which synergize with stronger binding capacity of Li<sup>+</sup> with [FeCl<sub>4</sub>·2TBP]<sup>-</sup> to enhance the selectivity of Li<sup>+</sup>. These results constitute a novel perspective to design new approaches for lithium recovery from lithium-containing aqueous solutions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500818"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cage Structural Hollow-Mesoporous Microreactor Confining Extractant for Lithium Recovery from Salt-Lake Brine.\",\"authors\":\"Enze Li, Yudi Gong, Zelong Li, Qiancheng Xia, Guandao Gao, Zihe Pan, Zhaozan Xu, Fangqin Cheng\",\"doi\":\"10.1002/cssc.202500818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sustainable and efficient lithium supply can effectively support the global energy transformation toward decarbonization and the development of electrified industries. However, current established solvent extraction technology suffers from extractant dissolution and low efficiency. Herein, a stable cage structural hollow-mesoporous microreactor with the confinement of lithium extractant, Na[FeCl<sub>4</sub>·2TBP], in the hollow cavity is developed for enhancing lithium separation from salt-lake brine. Resultantly, the confinement effect can compartmentalize extractant into micron-sized droplets and prevent its dissolution into aqueous phase. The obtained hollow-mesoporous microreactor exerts outstanding separation performance of Li<sup>+</sup> from brine, even at Mg/Li mass ratio up to 100:1, with high cyclic stability, adsorption quantity of 34.6 mg g<sup>-1</sup>, and Li<sup>+</sup>/Mg<sup>2+</sup> selectivity of nearly 1000 which is about six times higher than that for conventional extraction by Na[FeCl<sub>4</sub>·2TBP]. The mesopores within shells serve as Li<sup>+</sup> transport channels before reaction with the extractant confined in the hollow cavity. In this article, it is propose that the interfacial electric field generated by surface charges of mesopores can enhance Li<sup>+</sup> dehydration and diffusion, which synergize with stronger binding capacity of Li<sup>+</sup> with [FeCl<sub>4</sub>·2TBP]<sup>-</sup> to enhance the selectivity of Li<sup>+</sup>. These results constitute a novel perspective to design new approaches for lithium recovery from lithium-containing aqueous solutions.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e2500818\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500818\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500818","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可持续、高效的锂供应可以有效支持全球能源向脱碳转型和电气化产业发展。然而,现有的溶剂萃取技术存在萃取剂溶解和萃取效率低的问题。为了提高盐湖卤水中锂离子的分离效率,在空心腔内以Na[FeCl4∙2TBP]为萃取剂,设计了一种稳定的笼型结构中空介孔微反应器。因此,约束效应可以将萃取剂分隔成微米级的液滴,防止萃取剂溶解到水相中。所制备的中空-介孔微反应器在Mg/Li质量比高达100:1的条件下,对盐水中Li+的分离性能优异,具有较高的循环稳定性,吸附量为34.6 Mg/ g, Li+/Mg2+的选择性接近1000,是常规Na[FeCl4∙2TBP]萃取的6倍左右。壳内的介孔作为Li+的运输通道,在与被限制在空心腔内的萃取剂发生反应之前。我们提出介孔表面电荷产生的界面电场可以增强Li+的脱水和扩散,与Li+与[FeCl4∙2TBP]-的结合能力增强协同作用,增强Li+的选择性。这些结果为设计从含锂水溶液中回收锂的新方法提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cage Structural Hollow-Mesoporous Microreactor Confining Extractant for Lithium Recovery from Salt-Lake Brine.

The sustainable and efficient lithium supply can effectively support the global energy transformation toward decarbonization and the development of electrified industries. However, current established solvent extraction technology suffers from extractant dissolution and low efficiency. Herein, a stable cage structural hollow-mesoporous microreactor with the confinement of lithium extractant, Na[FeCl4·2TBP], in the hollow cavity is developed for enhancing lithium separation from salt-lake brine. Resultantly, the confinement effect can compartmentalize extractant into micron-sized droplets and prevent its dissolution into aqueous phase. The obtained hollow-mesoporous microreactor exerts outstanding separation performance of Li+ from brine, even at Mg/Li mass ratio up to 100:1, with high cyclic stability, adsorption quantity of 34.6 mg g-1, and Li+/Mg2+ selectivity of nearly 1000 which is about six times higher than that for conventional extraction by Na[FeCl4·2TBP]. The mesopores within shells serve as Li+ transport channels before reaction with the extractant confined in the hollow cavity. In this article, it is propose that the interfacial electric field generated by surface charges of mesopores can enhance Li+ dehydration and diffusion, which synergize with stronger binding capacity of Li+ with [FeCl4·2TBP]- to enhance the selectivity of Li+. These results constitute a novel perspective to design new approaches for lithium recovery from lithium-containing aqueous solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信