{"title":"可吸收生物材料的开发与优化及组织工程应用的先进3D支架制造技术。","authors":"Mohamed Jalaludeen Abdulkadhar, Santhoshkumar Jayakodi, Revathi Purushothaman, Beer Mohamed Syed Ali, Saranya Vinayagam, Lalitha Gnanasekaran, Praveen Ramakrishnan, Thanigaivel Sundaram","doi":"10.1002/asia.202401879","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue engineering has advanced significantly, driven by innovations in resorbable biomaterials and 3D scaffolds that serve as critical frameworks for tissue regeneration. This review highlights the integration of natural and synthetic polymers into scaffold design, emphasizing their capacity to mimic the extracellular matrix (ECM) and support cell adhesion, proliferation, and differentiation. The incorporation of advanced fabrication techniques such as 3D printing, nanotechnology, and electrospinning has enhanced scaffold functionality and precision, enabling the creation of patient-specific constructs. Significant challenges include balancing scaffold degradation rates with mechanical strength, managing immune responses, and optimizing biofabrication methods for clinical translation. Emerging materials, including bioactive polymers, nanogels, and graphene-based scaffolds, along with advancements in biofabrication such as 4D printing, demonstrate significant potential for addressing these limitations. This review emphasizes the importance of interdisciplinary collaboration, regulatory adaptation, and continuous research to transform scaffold technologies from experimental models into practical applications. This progress is crucial for improving clinical outcomes in regenerative medicine and for addressing complex tissue engineering challenges.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e01879"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Optimization of Resorbable Biomaterials and Advanced 3D Scaffold Fabrication Techniques for Tissue Engineering Application.\",\"authors\":\"Mohamed Jalaludeen Abdulkadhar, Santhoshkumar Jayakodi, Revathi Purushothaman, Beer Mohamed Syed Ali, Saranya Vinayagam, Lalitha Gnanasekaran, Praveen Ramakrishnan, Thanigaivel Sundaram\",\"doi\":\"10.1002/asia.202401879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tissue engineering has advanced significantly, driven by innovations in resorbable biomaterials and 3D scaffolds that serve as critical frameworks for tissue regeneration. This review highlights the integration of natural and synthetic polymers into scaffold design, emphasizing their capacity to mimic the extracellular matrix (ECM) and support cell adhesion, proliferation, and differentiation. The incorporation of advanced fabrication techniques such as 3D printing, nanotechnology, and electrospinning has enhanced scaffold functionality and precision, enabling the creation of patient-specific constructs. Significant challenges include balancing scaffold degradation rates with mechanical strength, managing immune responses, and optimizing biofabrication methods for clinical translation. Emerging materials, including bioactive polymers, nanogels, and graphene-based scaffolds, along with advancements in biofabrication such as 4D printing, demonstrate significant potential for addressing these limitations. This review emphasizes the importance of interdisciplinary collaboration, regulatory adaptation, and continuous research to transform scaffold technologies from experimental models into practical applications. This progress is crucial for improving clinical outcomes in regenerative medicine and for addressing complex tissue engineering challenges.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e01879\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202401879\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401879","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development and Optimization of Resorbable Biomaterials and Advanced 3D Scaffold Fabrication Techniques for Tissue Engineering Application.
Tissue engineering has advanced significantly, driven by innovations in resorbable biomaterials and 3D scaffolds that serve as critical frameworks for tissue regeneration. This review highlights the integration of natural and synthetic polymers into scaffold design, emphasizing their capacity to mimic the extracellular matrix (ECM) and support cell adhesion, proliferation, and differentiation. The incorporation of advanced fabrication techniques such as 3D printing, nanotechnology, and electrospinning has enhanced scaffold functionality and precision, enabling the creation of patient-specific constructs. Significant challenges include balancing scaffold degradation rates with mechanical strength, managing immune responses, and optimizing biofabrication methods for clinical translation. Emerging materials, including bioactive polymers, nanogels, and graphene-based scaffolds, along with advancements in biofabrication such as 4D printing, demonstrate significant potential for addressing these limitations. This review emphasizes the importance of interdisciplinary collaboration, regulatory adaptation, and continuous research to transform scaffold technologies from experimental models into practical applications. This progress is crucial for improving clinical outcomes in regenerative medicine and for addressing complex tissue engineering challenges.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).