揭示外泌体潜能:神经变性的转化治疗。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ankit Tiwari, Brijesh Singh, Gireesh Kumar Singh, Jairam Meena, Ashish Kumar Agrawal, Saroj Kumar, Gyan Modi
{"title":"揭示外泌体潜能:神经变性的转化治疗。","authors":"Ankit Tiwari, Brijesh Singh, Gireesh Kumar Singh, Jairam Meena, Ashish Kumar Agrawal, Saroj Kumar, Gyan Modi","doi":"10.1021/acsabm.5c00096","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes, tiny extracellular vesicles, hold significant potential as biological nanocarriers for diverse therapeutic agents due to their exceptional ability to navigate through the barriers of biological systems. This comprehensive review delves into the capability of exosomes in the therapy of neurodegenerative disorders, concentrating on their potential for targeted drug delivery. It examines the complex processes involved in exosome-mediated drug delivery, including targeting, cellular uptake, intracellular trafficking, and therapeutic release. Insights from preclinical studies and clinical trials are exploited, highlighting the impactful applications of exosomes, particularly in the treatment of Parkinson's, Alzheimer's, ALS, and Huntington's diseases. The review also addresses challenges such as immunogenicity, scalability, and regulatory obstacles while exploring emerging technologies like advanced exosome engineering, personalized medicine, and the integration of nanotechnology. Overall, this review accentuates the potential impact of exosome-based treatments in biomedicine alongside the critical need to overcome existing barriers.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Exosome Potential: Transforming Treatments for Neurodegeneration.\",\"authors\":\"Ankit Tiwari, Brijesh Singh, Gireesh Kumar Singh, Jairam Meena, Ashish Kumar Agrawal, Saroj Kumar, Gyan Modi\",\"doi\":\"10.1021/acsabm.5c00096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exosomes, tiny extracellular vesicles, hold significant potential as biological nanocarriers for diverse therapeutic agents due to their exceptional ability to navigate through the barriers of biological systems. This comprehensive review delves into the capability of exosomes in the therapy of neurodegenerative disorders, concentrating on their potential for targeted drug delivery. It examines the complex processes involved in exosome-mediated drug delivery, including targeting, cellular uptake, intracellular trafficking, and therapeutic release. Insights from preclinical studies and clinical trials are exploited, highlighting the impactful applications of exosomes, particularly in the treatment of Parkinson's, Alzheimer's, ALS, and Huntington's diseases. The review also addresses challenges such as immunogenicity, scalability, and regulatory obstacles while exploring emerging technologies like advanced exosome engineering, personalized medicine, and the integration of nanotechnology. Overall, this review accentuates the potential impact of exosome-based treatments in biomedicine alongside the critical need to overcome existing barriers.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.5c00096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

外泌体是一种微小的细胞外囊泡,由于其具有穿越生物系统屏障的特殊能力,因此作为多种治疗药物的生物纳米载体具有巨大的潜力。这篇全面的综述深入研究了外泌体在神经退行性疾病治疗中的能力,集中在它们靶向药物递送的潜力上。它研究了外泌体介导的药物递送的复杂过程,包括靶向、细胞摄取、细胞内运输和治疗释放。利用临床前研究和临床试验的见解,突出外泌体的有效应用,特别是在帕金森病、阿尔茨海默病、ALS和亨廷顿病的治疗中。在探索新兴技术,如先进的外泌体工程、个性化医疗和纳米技术集成的同时,该综述还解决了诸如免疫原性、可扩展性和监管障碍等挑战。总的来说,这篇综述强调了基于外泌体的治疗在生物医学中的潜在影响,以及克服现有障碍的迫切需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling Exosome Potential: Transforming Treatments for Neurodegeneration.

Exosomes, tiny extracellular vesicles, hold significant potential as biological nanocarriers for diverse therapeutic agents due to their exceptional ability to navigate through the barriers of biological systems. This comprehensive review delves into the capability of exosomes in the therapy of neurodegenerative disorders, concentrating on their potential for targeted drug delivery. It examines the complex processes involved in exosome-mediated drug delivery, including targeting, cellular uptake, intracellular trafficking, and therapeutic release. Insights from preclinical studies and clinical trials are exploited, highlighting the impactful applications of exosomes, particularly in the treatment of Parkinson's, Alzheimer's, ALS, and Huntington's diseases. The review also addresses challenges such as immunogenicity, scalability, and regulatory obstacles while exploring emerging technologies like advanced exosome engineering, personalized medicine, and the integration of nanotechnology. Overall, this review accentuates the potential impact of exosome-based treatments in biomedicine alongside the critical need to overcome existing barriers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信