Massimiliano Gubinelli, Martin Hairer, Tadahiro Oh, Younes Zine
{"title":"通过随机量化的简单构造正弦戈登模型","authors":"Massimiliano Gubinelli, Martin Hairer, Tadahiro Oh, Younes Zine","doi":"10.1112/jlms.70214","DOIUrl":null,"url":null,"abstract":"<p>We present a simple PDE construction of the sine-Gordon measure below the first threshold (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>β</mi>\n <mn>2</mn>\n </msup>\n <mo><</mo>\n <mn>4</mn>\n <mi>π</mi>\n </mrow>\n <annotation>$\\beta ^2 < 4\\pi$</annotation>\n </semantics></math>), in both the finite and infinite volume settings, by studying the corresponding parabolic sine-Gordon model. We also establish pathwise global well-posedness of the hyperbolic sine-Gordon model in finite volume for <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>β</mi>\n <mn>2</mn>\n </msup>\n <mo><</mo>\n <mn>2</mn>\n <mi>π</mi>\n </mrow>\n <annotation>$\\beta ^2 < 2\\pi$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70214","citationCount":"0","resultStr":"{\"title\":\"A simple construction of the sine-Gordon model via stochastic quantization\",\"authors\":\"Massimiliano Gubinelli, Martin Hairer, Tadahiro Oh, Younes Zine\",\"doi\":\"10.1112/jlms.70214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a simple PDE construction of the sine-Gordon measure below the first threshold (<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>β</mi>\\n <mn>2</mn>\\n </msup>\\n <mo><</mo>\\n <mn>4</mn>\\n <mi>π</mi>\\n </mrow>\\n <annotation>$\\\\beta ^2 < 4\\\\pi$</annotation>\\n </semantics></math>), in both the finite and infinite volume settings, by studying the corresponding parabolic sine-Gordon model. We also establish pathwise global well-posedness of the hyperbolic sine-Gordon model in finite volume for <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>β</mi>\\n <mn>2</mn>\\n </msup>\\n <mo><</mo>\\n <mn>2</mn>\\n <mi>π</mi>\\n </mrow>\\n <annotation>$\\\\beta ^2 < 2\\\\pi$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70214\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70214\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70214","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A simple construction of the sine-Gordon model via stochastic quantization
We present a simple PDE construction of the sine-Gordon measure below the first threshold (), in both the finite and infinite volume settings, by studying the corresponding parabolic sine-Gordon model. We also establish pathwise global well-posedness of the hyperbolic sine-Gordon model in finite volume for .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.