HYM连接对度规变化的连续性

IF 1.2 2区 数学 Q1 MATHEMATICS
Rémi Delloque
{"title":"HYM连接对度规变化的连续性","authors":"Rémi Delloque","doi":"10.1112/jlms.70219","DOIUrl":null,"url":null,"abstract":"<p>We investigate the set of (real Dolbeault classes of) balanced metrics <span></span><math>\n <semantics>\n <mi>Θ</mi>\n <annotation>$\\Theta$</annotation>\n </semantics></math> on a balanced manifold <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> with respect to which a torsion-free coherent sheaf <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathcal {E}$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is slope stable. We prove that the set of all such <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>[</mo>\n <mi>Θ</mi>\n <mo>]</mo>\n </mrow>\n <mo>∈</mo>\n <msup>\n <mi>H</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$[\\Theta] \\in H^{n - 1,n - 1}(X,\\mathbb {R})$</annotation>\n </semantics></math> is an open convex cone locally defined by a finite number of linear inequalities. When <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathcal {E}$</annotation>\n </semantics></math> is a Hermitian vector bundle, the Kobayashi–Hitchin correspondence provides associated Hermitian Yang–Mills connections, which we show depend continuously on the metric, even around classes with respect to which <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathcal {E}$</annotation>\n </semantics></math> is only semi-stable. In this case, the holomorphic structure induced by the connection is the holomorphic structure of the associated graded object. The method relies on semi-stable perturbation techniques for geometric PDEs with a moment map interpretation and is quite versatile, and we hope that it can be used in other similar problems.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70219","citationCount":"0","resultStr":"{\"title\":\"Continuity of HYM connections with respect to metric variations\",\"authors\":\"Rémi Delloque\",\"doi\":\"10.1112/jlms.70219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the set of (real Dolbeault classes of) balanced metrics <span></span><math>\\n <semantics>\\n <mi>Θ</mi>\\n <annotation>$\\\\Theta$</annotation>\\n </semantics></math> on a balanced manifold <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> with respect to which a torsion-free coherent sheaf <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$\\\\mathcal {E}$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> is slope stable. We prove that the set of all such <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>[</mo>\\n <mi>Θ</mi>\\n <mo>]</mo>\\n </mrow>\\n <mo>∈</mo>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$[\\\\Theta] \\\\in H^{n - 1,n - 1}(X,\\\\mathbb {R})$</annotation>\\n </semantics></math> is an open convex cone locally defined by a finite number of linear inequalities. When <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$\\\\mathcal {E}$</annotation>\\n </semantics></math> is a Hermitian vector bundle, the Kobayashi–Hitchin correspondence provides associated Hermitian Yang–Mills connections, which we show depend continuously on the metric, even around classes with respect to which <span></span><math>\\n <semantics>\\n <mi>E</mi>\\n <annotation>$\\\\mathcal {E}$</annotation>\\n </semantics></math> is only semi-stable. In this case, the holomorphic structure induced by the connection is the holomorphic structure of the associated graded object. The method relies on semi-stable perturbation techniques for geometric PDEs with a moment map interpretation and is quite versatile, and we hope that it can be used in other similar problems.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70219\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70219\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70219","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了平衡流形X$ X$上的平衡度量Θ $\Theta$的(实Dolbeault类)集合,其中X$ X$上的无扭相干束E $\mathcal {E}$是斜率稳定的。我们证明了所有这样的集合[Θ]∈H n−1,n−1 (X, R)$ [\Theta] \in H^{n - 1,n - 1}(X,\mathbb {R})$是由有限个线性不等式局部定义的开凸锥。当E $\mathcal {E}$是厄米向量束时,Kobayashi-Hitchin对应提供了相关的厄米杨-米尔斯连接,我们证明了它连续依赖于度规,甚至在E $\mathcal {E}$仅为半稳定的类周围。在这种情况下,由连接引起的全纯结构就是相关渐变物体的全纯结构。该方法利用半稳定摄动技术求解具有矩映射解释的几何偏微分方程,具有较强的通用性,希望能应用于其他类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Continuity of HYM connections with respect to metric variations

Continuity of HYM connections with respect to metric variations

Continuity of HYM connections with respect to metric variations

Continuity of HYM connections with respect to metric variations

Continuity of HYM connections with respect to metric variations

We investigate the set of (real Dolbeault classes of) balanced metrics Θ $\Theta$ on a balanced manifold X $X$ with respect to which a torsion-free coherent sheaf E $\mathcal {E}$ on X $X$ is slope stable. We prove that the set of all such [ Θ ] H n 1 , n 1 ( X , R ) $[\Theta] \in H^{n - 1,n - 1}(X,\mathbb {R})$ is an open convex cone locally defined by a finite number of linear inequalities. When E $\mathcal {E}$ is a Hermitian vector bundle, the Kobayashi–Hitchin correspondence provides associated Hermitian Yang–Mills connections, which we show depend continuously on the metric, even around classes with respect to which E $\mathcal {E}$ is only semi-stable. In this case, the holomorphic structure induced by the connection is the holomorphic structure of the associated graded object. The method relies on semi-stable perturbation techniques for geometric PDEs with a moment map interpretation and is quite versatile, and we hope that it can be used in other similar problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信