{"title":"电-气耦合系统分布式优化调度策略","authors":"Rongqiang Guan, Xiaoguang Li, Pingping Xiao, Rufei Ren","doi":"10.1049/rpg2.70077","DOIUrl":null,"url":null,"abstract":"<p>With the development of energy internet, multi-energy coupling system has received wide attention. This paper addresses the economic dispatch optimization problem in coupled electricity-gas energy systems, with a particular focus on the participation of renewable energy sources. A comprehensive model is proposed, incorporating renewable energy power generation, gas production, and electricity-gas conversion processes. The model further refines the composition of multi-energy loads, transitioning from traditional single-energy loads to more complex multi-energy loads. Additionally, a cost model is established that considers conversion losses, calculation coefficients, and conversion intervals, enhancing adaptability to future new energy system developments and optimal scheduling. A fully distributed optimization algorithm based on neural dynamics is introduced, allowing each energy node to minimize information exchange and perform local optimal power calculations. Theoretical and simulation proofs are provided to validate the effectiveness and efficiency of the proposed model and algorithm.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.70077","citationCount":"0","resultStr":"{\"title\":\"Distributed Optimization Dispatch Strategy for Electricity-Gas Coupled System\",\"authors\":\"Rongqiang Guan, Xiaoguang Li, Pingping Xiao, Rufei Ren\",\"doi\":\"10.1049/rpg2.70077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the development of energy internet, multi-energy coupling system has received wide attention. This paper addresses the economic dispatch optimization problem in coupled electricity-gas energy systems, with a particular focus on the participation of renewable energy sources. A comprehensive model is proposed, incorporating renewable energy power generation, gas production, and electricity-gas conversion processes. The model further refines the composition of multi-energy loads, transitioning from traditional single-energy loads to more complex multi-energy loads. Additionally, a cost model is established that considers conversion losses, calculation coefficients, and conversion intervals, enhancing adaptability to future new energy system developments and optimal scheduling. A fully distributed optimization algorithm based on neural dynamics is introduced, allowing each energy node to minimize information exchange and perform local optimal power calculations. Theoretical and simulation proofs are provided to validate the effectiveness and efficiency of the proposed model and algorithm.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.70077\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.70077\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.70077","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Distributed Optimization Dispatch Strategy for Electricity-Gas Coupled System
With the development of energy internet, multi-energy coupling system has received wide attention. This paper addresses the economic dispatch optimization problem in coupled electricity-gas energy systems, with a particular focus on the participation of renewable energy sources. A comprehensive model is proposed, incorporating renewable energy power generation, gas production, and electricity-gas conversion processes. The model further refines the composition of multi-energy loads, transitioning from traditional single-energy loads to more complex multi-energy loads. Additionally, a cost model is established that considers conversion losses, calculation coefficients, and conversion intervals, enhancing adaptability to future new energy system developments and optimal scheduling. A fully distributed optimization algorithm based on neural dynamics is introduced, allowing each energy node to minimize information exchange and perform local optimal power calculations. Theoretical and simulation proofs are provided to validate the effectiveness and efficiency of the proposed model and algorithm.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf