创新同步荧光光谱法评估肌萎缩性侧索硬化症新药物组合:绿色和可持续性评价的人体体内应用

IF 3 4区 化学 Q2 CHEMISTRY, ANALYTICAL
Luminescence Pub Date : 2025-06-24 DOI:10.1002/bio.70222
Amal B. Ahmed, Mohammed E. Draz, Haydy Asad, Ibrahim A. Naguib, Fadwa H. Edrees
{"title":"创新同步荧光光谱法评估肌萎缩性侧索硬化症新药物组合:绿色和可持续性评价的人体体内应用","authors":"Amal B. Ahmed,&nbsp;Mohammed E. Draz,&nbsp;Haydy Asad,&nbsp;Ibrahim A. Naguib,&nbsp;Fadwa H. Edrees","doi":"10.1002/bio.70222","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Amyotrophic lateral sclerosis (ALS) is a severe neurological disorder that causes damage to sensory neurons, then paralysis and death. A novel combination of celecoxib (CXP) and ciprofloxacin (CIP) has recently been used to enhance both motor performance and CNS cell morphology, alterations in the rate of disease progression, quality of life, and survival, which passed phase IIb RCT study. Celecoxib is classified as a non-steroidal anti-inflammatory drug; ciprofloxacin is a fluoroquinolone antibiotic that has a synergistic effect for the treatment of ALS, which is a severe neurological disorder. A new sustainable, simple, sensitive, and environmentally friendly synchronous spectrofluorimetric approach (SSF) was established to simultaneously estimate celecoxib and ciprofloxacin in pure form and biological fluids. The approach depends on synchronous fluorescence spectroscopy, where CXP and CIP were detected at 364 and 438 nm, correspondingly, using Δ<i>λ</i> of 80-nm utilizing sodium dodecyl sulphate (SDS) micellar system, which considerably improved synchronous fluorescence intensity. The approach was validated and revealed excellent linearity with concentrations varying from 10 to 10,000 and 5 to 20,000 ng/mL for CXP and CIP; correspondingly, CXP and CIP showed extremely low limits of detection (LODs) 0.58–0.24 ng/mL, which guarantee the sensitivity of the proposed approach. The suggested approach was successfully implemented to analyze the co-administered pharmaceuticals in their pure form and actual human plasma after concurrent oral administration of both drugs, which may be employed in an inquiry on the pharmacokinetics and bioavailability of human plasma to the new coming PrimeC pharmaceutical formulation. Ultimately, the method's remarkable greenness was proved by evaluating its greenness profile using various assessment strategies. The findings revealed that the SSF approach is a sustainable and environmentally friendly analytical approach.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Synchronous Spectrofluorometric Method for Assessing a Novel Drug Combination in Amyotrophic Lateral Sclerosis: In Vivo Human Application With Greenness and Sustainability Evaluation\",\"authors\":\"Amal B. Ahmed,&nbsp;Mohammed E. Draz,&nbsp;Haydy Asad,&nbsp;Ibrahim A. Naguib,&nbsp;Fadwa H. Edrees\",\"doi\":\"10.1002/bio.70222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Amyotrophic lateral sclerosis (ALS) is a severe neurological disorder that causes damage to sensory neurons, then paralysis and death. A novel combination of celecoxib (CXP) and ciprofloxacin (CIP) has recently been used to enhance both motor performance and CNS cell morphology, alterations in the rate of disease progression, quality of life, and survival, which passed phase IIb RCT study. Celecoxib is classified as a non-steroidal anti-inflammatory drug; ciprofloxacin is a fluoroquinolone antibiotic that has a synergistic effect for the treatment of ALS, which is a severe neurological disorder. A new sustainable, simple, sensitive, and environmentally friendly synchronous spectrofluorimetric approach (SSF) was established to simultaneously estimate celecoxib and ciprofloxacin in pure form and biological fluids. The approach depends on synchronous fluorescence spectroscopy, where CXP and CIP were detected at 364 and 438 nm, correspondingly, using Δ<i>λ</i> of 80-nm utilizing sodium dodecyl sulphate (SDS) micellar system, which considerably improved synchronous fluorescence intensity. The approach was validated and revealed excellent linearity with concentrations varying from 10 to 10,000 and 5 to 20,000 ng/mL for CXP and CIP; correspondingly, CXP and CIP showed extremely low limits of detection (LODs) 0.58–0.24 ng/mL, which guarantee the sensitivity of the proposed approach. The suggested approach was successfully implemented to analyze the co-administered pharmaceuticals in their pure form and actual human plasma after concurrent oral administration of both drugs, which may be employed in an inquiry on the pharmacokinetics and bioavailability of human plasma to the new coming PrimeC pharmaceutical formulation. Ultimately, the method's remarkable greenness was proved by evaluating its greenness profile using various assessment strategies. The findings revealed that the SSF approach is a sustainable and environmentally friendly analytical approach.</p>\\n </div>\",\"PeriodicalId\":49902,\"journal\":{\"name\":\"Luminescence\",\"volume\":\"40 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Luminescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bio.70222\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.70222","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

肌萎缩性侧索硬化症(ALS)是一种严重的神经系统疾病,会导致感觉神经元受损,然后瘫痪和死亡。塞来昔布(CXP)和环丙沙星(CIP)的新型组合最近被用于增强运动性能和中枢神经系统细胞形态,改变疾病进展率,生活质量和生存率,该研究通过了IIb期RCT研究。塞来昔布被归类为非甾体抗炎药;环丙沙星是一种氟喹诺酮类抗生素,对治疗ALS有协同作用,ALS是一种严重的神经系统疾病。建立了一种可持续、简单、灵敏、环保的同步荧光光谱法(SSF),用于同时测定纯形式和生物液体中的塞来昔布和环丙沙星。该方法依赖于同步荧光光谱,其中CXP和CIP分别在364和438 nm处检测,使用80 nm的Δλ,利用十二烷基硫酸钠(SDS)胶束体系,大大提高了同步荧光强度。该方法经过验证,发现CXP和CIP的浓度在10 ~ 10,000和5 ~ 20,000 ng/mL范围内具有良好的线性关系;CXP和CIP的检出限极低(lod)为0.58 ~ 0.24 ng/mL,具有较高的灵敏度。该方法成功地分析了两种药物同时口服后的纯形式和实际血浆,可用于研究新上市的PrimeC药物制剂对人血浆的药代动力学和生物利用度。最后,通过采用多种评价策略对该方法的绿色度进行评价,证明了该方法的显著的绿色度。研究结果显示,可持续发展基金方法是一种可持续和环保的分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative Synchronous Spectrofluorometric Method for Assessing a Novel Drug Combination in Amyotrophic Lateral Sclerosis: In Vivo Human Application With Greenness and Sustainability Evaluation

Amyotrophic lateral sclerosis (ALS) is a severe neurological disorder that causes damage to sensory neurons, then paralysis and death. A novel combination of celecoxib (CXP) and ciprofloxacin (CIP) has recently been used to enhance both motor performance and CNS cell morphology, alterations in the rate of disease progression, quality of life, and survival, which passed phase IIb RCT study. Celecoxib is classified as a non-steroidal anti-inflammatory drug; ciprofloxacin is a fluoroquinolone antibiotic that has a synergistic effect for the treatment of ALS, which is a severe neurological disorder. A new sustainable, simple, sensitive, and environmentally friendly synchronous spectrofluorimetric approach (SSF) was established to simultaneously estimate celecoxib and ciprofloxacin in pure form and biological fluids. The approach depends on synchronous fluorescence spectroscopy, where CXP and CIP were detected at 364 and 438 nm, correspondingly, using Δλ of 80-nm utilizing sodium dodecyl sulphate (SDS) micellar system, which considerably improved synchronous fluorescence intensity. The approach was validated and revealed excellent linearity with concentrations varying from 10 to 10,000 and 5 to 20,000 ng/mL for CXP and CIP; correspondingly, CXP and CIP showed extremely low limits of detection (LODs) 0.58–0.24 ng/mL, which guarantee the sensitivity of the proposed approach. The suggested approach was successfully implemented to analyze the co-administered pharmaceuticals in their pure form and actual human plasma after concurrent oral administration of both drugs, which may be employed in an inquiry on the pharmacokinetics and bioavailability of human plasma to the new coming PrimeC pharmaceutical formulation. Ultimately, the method's remarkable greenness was proved by evaluating its greenness profile using various assessment strategies. The findings revealed that the SSF approach is a sustainable and environmentally friendly analytical approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Luminescence
Luminescence 生物-生化与分子生物学
CiteScore
5.10
自引率
13.80%
发文量
248
审稿时长
3.5 months
期刊介绍: Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry. Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信