基于可见波长石墨烯的集成光相位调制器

IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Qing Meng;Jiasheng Fu;Zhongying Xue;Ziao Tian;Yan Cai;Miao Zhang;Zheng Wang;Zengfeng Di
{"title":"基于可见波长石墨烯的集成光相位调制器","authors":"Qing Meng;Jiasheng Fu;Zhongying Xue;Ziao Tian;Yan Cai;Miao Zhang;Zheng Wang;Zengfeng Di","doi":"10.1109/JQE.2025.3577472","DOIUrl":null,"url":null,"abstract":"Optical phase modulators are critical components in integrated photonic systems operating at visible wavelengths. However, current solutions to integrated optical phase modulators at visible wavelengths face challenges such as high insertion losses, large footprints, low bandwidth, and high-power consumption. In this work, we introduce a graphene-based integrated optical phase modulator designed for operation at 488 nm, implemented on silicon nitride photonic integrated circuits. This design aligns seamlessly with standard silicon photonic processes. The 3-dB bandwidth of the integrated optical phase modulator ranges from 3 GHz to 148 GHz depending on design and fabrication conditions, and a 74 GHz 3-dB bandwidth is considered achievable based on previously published results. Meanwhile, a modulation efficiency (quantified by the product of the <inline-formula> <tex-math>$\\pi $ </tex-math></inline-formula>-phase shift voltage and length, <inline-formula> <tex-math>$\\boldsymbol {V_{\\mathrm {\\pi }}L}$ </tex-math></inline-formula>) of 0.13 V<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>cm could be attained. Moreover, the modulator is capable of operating across the entire visible wavelength range. This investigation presents a compact, high-speed solution to integrated optical phase modulators at visible wavelengths, facilitating a broad range of applications in the visible spectrum.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 3","pages":"1-7"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene-Based Integrated Optical Phase Modulator at Visible Wavelengths\",\"authors\":\"Qing Meng;Jiasheng Fu;Zhongying Xue;Ziao Tian;Yan Cai;Miao Zhang;Zheng Wang;Zengfeng Di\",\"doi\":\"10.1109/JQE.2025.3577472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical phase modulators are critical components in integrated photonic systems operating at visible wavelengths. However, current solutions to integrated optical phase modulators at visible wavelengths face challenges such as high insertion losses, large footprints, low bandwidth, and high-power consumption. In this work, we introduce a graphene-based integrated optical phase modulator designed for operation at 488 nm, implemented on silicon nitride photonic integrated circuits. This design aligns seamlessly with standard silicon photonic processes. The 3-dB bandwidth of the integrated optical phase modulator ranges from 3 GHz to 148 GHz depending on design and fabrication conditions, and a 74 GHz 3-dB bandwidth is considered achievable based on previously published results. Meanwhile, a modulation efficiency (quantified by the product of the <inline-formula> <tex-math>$\\\\pi $ </tex-math></inline-formula>-phase shift voltage and length, <inline-formula> <tex-math>$\\\\boldsymbol {V_{\\\\mathrm {\\\\pi }}L}$ </tex-math></inline-formula>) of 0.13 V<inline-formula> <tex-math>$\\\\cdot $ </tex-math></inline-formula>cm could be attained. Moreover, the modulator is capable of operating across the entire visible wavelength range. This investigation presents a compact, high-speed solution to integrated optical phase modulators at visible wavelengths, facilitating a broad range of applications in the visible spectrum.\",\"PeriodicalId\":13200,\"journal\":{\"name\":\"IEEE Journal of Quantum Electronics\",\"volume\":\"61 3\",\"pages\":\"1-7\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11027107/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11027107/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

光相位调制器是可见光集成光子系统的关键器件。然而,目前集成光相位调制器在可见光波段的解决方案面临着诸如高插入损耗、大占地面积、低带宽和高功耗等挑战。在这项工作中,我们介绍了一种基于石墨烯的集成光相位调制器,设计工作在488nm,实现在氮化硅光子集成电路上。这种设计与标准硅光子工艺无缝对接。根据设计和制造条件,集成光相位调制器的3db带宽范围为3 GHz至148 GHz,根据先前发表的结果,认为可以实现74 GHz的3db带宽。同时,调制效率(由$\pi $相移电压与长度,$\boldsymbol {V_{\ maththrm {\pi}}L}$的乘积量化)为0.13 V $\cdot $ cm。此外,该调制器能够在整个可见波长范围内工作。本研究提出了一种紧凑、高速的可见波长集成光相位调制器解决方案,促进了可见光谱的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphene-Based Integrated Optical Phase Modulator at Visible Wavelengths
Optical phase modulators are critical components in integrated photonic systems operating at visible wavelengths. However, current solutions to integrated optical phase modulators at visible wavelengths face challenges such as high insertion losses, large footprints, low bandwidth, and high-power consumption. In this work, we introduce a graphene-based integrated optical phase modulator designed for operation at 488 nm, implemented on silicon nitride photonic integrated circuits. This design aligns seamlessly with standard silicon photonic processes. The 3-dB bandwidth of the integrated optical phase modulator ranges from 3 GHz to 148 GHz depending on design and fabrication conditions, and a 74 GHz 3-dB bandwidth is considered achievable based on previously published results. Meanwhile, a modulation efficiency (quantified by the product of the $\pi $ -phase shift voltage and length, $\boldsymbol {V_{\mathrm {\pi }}L}$ ) of 0.13 V $\cdot $ cm could be attained. Moreover, the modulator is capable of operating across the entire visible wavelength range. This investigation presents a compact, high-speed solution to integrated optical phase modulators at visible wavelengths, facilitating a broad range of applications in the visible spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信