整合基因多态性和临床数据开发乳腺癌放射治疗中皮肤毒性的预测模型

IF 7.9 2区 医学 Q1 OBSTETRICS & GYNECOLOGY
Ester Aguado-Flor , Victoria M. Reyes , Víctor Navarro , Meritxell Mollà , Miguel E. Aguado-Barrera , Manuel Altabas , David Azria , Adinda Baten , Celine Bourgier , Renée Bultijnck , Jenny Chang-Claude , Maria Carmen De Santis , Alison M. Dunning , Laura Duran-Lozano , Rebecca M. Elliott , Marie-Pierre Farcy Jacquet , Carlotta Giandini , Alexandra Giraldo , Sheryl Green , Maarten Lambrecht , Sara Gutiérrez-Enríquez
{"title":"整合基因多态性和临床数据开发乳腺癌放射治疗中皮肤毒性的预测模型","authors":"Ester Aguado-Flor ,&nbsp;Victoria M. Reyes ,&nbsp;Víctor Navarro ,&nbsp;Meritxell Mollà ,&nbsp;Miguel E. Aguado-Barrera ,&nbsp;Manuel Altabas ,&nbsp;David Azria ,&nbsp;Adinda Baten ,&nbsp;Celine Bourgier ,&nbsp;Renée Bultijnck ,&nbsp;Jenny Chang-Claude ,&nbsp;Maria Carmen De Santis ,&nbsp;Alison M. Dunning ,&nbsp;Laura Duran-Lozano ,&nbsp;Rebecca M. Elliott ,&nbsp;Marie-Pierre Farcy Jacquet ,&nbsp;Carlotta Giandini ,&nbsp;Alexandra Giraldo ,&nbsp;Sheryl Green ,&nbsp;Maarten Lambrecht ,&nbsp;Sara Gutiérrez-Enríquez","doi":"10.1016/j.breast.2025.104506","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>We aim to develop and validate predictive models for acute and late skin toxicity in breast cancer (BC) patients undergoing radiation therapy (RT). Models incorporate a genetic profile—comprising candidate single nucleotide polymorphisms (SNPs) in non-coding RNAs and previously reported toxicity-associated variants—combined with clinical variables.</div></div><div><h3>Methods</h3><div>The study involved 1979 BC patients monitored for two to eight years post-RT in a multi-centre study. We assessed acute (oedema/erythema) and late (atrophy/fibrosis) toxicity using logistic regression and Cox proportional hazards models. The cohort was divided into training and validation datasets.</div></div><div><h3>Results</h3><div>Six SNPs demonstrated to be predictors of acute (rs13116075, rs12565978, rs72550778 and rs7284767) and late toxicity (rs16837908 and rs61764370) either in the training or validation cohort. However, none of these SNPs were consistently associated with toxicity across both stages of analysis. The rs13116075, rs12565978 and rs16837908 were previously reported to be associated with RT toxicity. In the validation phase, SNP-based models showed limited predictive ability, with AUC values of 0.49 and c-index of 0.54 for acute and late toxicity, respectively. Models incorporating either clinical variables alone or in combination with SNPs achieved similar AUC and c-index values of ∼0.60 for acute and late toxicity, respectively. However, the combined model exhibited the highest predictive accuracy for acute and late toxicity, both in the training and the validation cohorts.</div></div><div><h3>Conclusions</h3><div>Our findings highlight the importance of combining clinical data with genetic markers to enhance the accuracy of models predicting RT toxicity in BC.</div></div>","PeriodicalId":9093,"journal":{"name":"Breast","volume":"82 ","pages":"Article 104506"},"PeriodicalIF":7.9000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating genetic polymorphisms and clinical data to develop predictive models for skin toxicity in breast cancer radiation therapy\",\"authors\":\"Ester Aguado-Flor ,&nbsp;Victoria M. Reyes ,&nbsp;Víctor Navarro ,&nbsp;Meritxell Mollà ,&nbsp;Miguel E. Aguado-Barrera ,&nbsp;Manuel Altabas ,&nbsp;David Azria ,&nbsp;Adinda Baten ,&nbsp;Celine Bourgier ,&nbsp;Renée Bultijnck ,&nbsp;Jenny Chang-Claude ,&nbsp;Maria Carmen De Santis ,&nbsp;Alison M. Dunning ,&nbsp;Laura Duran-Lozano ,&nbsp;Rebecca M. Elliott ,&nbsp;Marie-Pierre Farcy Jacquet ,&nbsp;Carlotta Giandini ,&nbsp;Alexandra Giraldo ,&nbsp;Sheryl Green ,&nbsp;Maarten Lambrecht ,&nbsp;Sara Gutiérrez-Enríquez\",\"doi\":\"10.1016/j.breast.2025.104506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>We aim to develop and validate predictive models for acute and late skin toxicity in breast cancer (BC) patients undergoing radiation therapy (RT). Models incorporate a genetic profile—comprising candidate single nucleotide polymorphisms (SNPs) in non-coding RNAs and previously reported toxicity-associated variants—combined with clinical variables.</div></div><div><h3>Methods</h3><div>The study involved 1979 BC patients monitored for two to eight years post-RT in a multi-centre study. We assessed acute (oedema/erythema) and late (atrophy/fibrosis) toxicity using logistic regression and Cox proportional hazards models. The cohort was divided into training and validation datasets.</div></div><div><h3>Results</h3><div>Six SNPs demonstrated to be predictors of acute (rs13116075, rs12565978, rs72550778 and rs7284767) and late toxicity (rs16837908 and rs61764370) either in the training or validation cohort. However, none of these SNPs were consistently associated with toxicity across both stages of analysis. The rs13116075, rs12565978 and rs16837908 were previously reported to be associated with RT toxicity. In the validation phase, SNP-based models showed limited predictive ability, with AUC values of 0.49 and c-index of 0.54 for acute and late toxicity, respectively. Models incorporating either clinical variables alone or in combination with SNPs achieved similar AUC and c-index values of ∼0.60 for acute and late toxicity, respectively. However, the combined model exhibited the highest predictive accuracy for acute and late toxicity, both in the training and the validation cohorts.</div></div><div><h3>Conclusions</h3><div>Our findings highlight the importance of combining clinical data with genetic markers to enhance the accuracy of models predicting RT toxicity in BC.</div></div>\",\"PeriodicalId\":9093,\"journal\":{\"name\":\"Breast\",\"volume\":\"82 \",\"pages\":\"Article 104506\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960977625005235\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960977625005235","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们的目的是建立和验证乳腺癌(BC)患者接受放射治疗(RT)的急性和晚期皮肤毒性的预测模型。模型结合了遗传谱-包括非编码rna中的候选单核苷酸多态性(snp)和先前报道的毒性相关变异-结合临床变量。方法本研究纳入了1979例BC患者,在多中心研究中随访2 - 8年。我们使用logistic回归和Cox比例风险模型评估了急性(水肿/红斑)和晚期(萎缩/纤维化)毒性。该队列被分为训练和验证数据集。结果在训练或验证队列中,6个snp被证明是急性毒性(rs13116075、rs12565978、rs72550778和rs7284767)和晚期毒性(rs16837908和rs61764370)的预测因子。然而,在两个分析阶段中,这些snp都没有一致地与毒性相关。rs13116075、rs12565978和rs16837908先前被报道与RT毒性相关。在验证阶段,基于snp的模型的预测能力有限,急性毒性和晚期毒性的AUC值分别为0.49和0.54。单独纳入临床变量或与snp结合的模型在急性和晚期毒性方面分别获得了相似的AUC和c-指数值,分别为0.60。然而,在训练和验证队列中,联合模型对急性和晚期毒性的预测准确性最高。结论我们的研究结果强调了将临床数据与遗传标记相结合的重要性,以提高预测BC中RT毒性模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating genetic polymorphisms and clinical data to develop predictive models for skin toxicity in breast cancer radiation therapy

Background

We aim to develop and validate predictive models for acute and late skin toxicity in breast cancer (BC) patients undergoing radiation therapy (RT). Models incorporate a genetic profile—comprising candidate single nucleotide polymorphisms (SNPs) in non-coding RNAs and previously reported toxicity-associated variants—combined with clinical variables.

Methods

The study involved 1979 BC patients monitored for two to eight years post-RT in a multi-centre study. We assessed acute (oedema/erythema) and late (atrophy/fibrosis) toxicity using logistic regression and Cox proportional hazards models. The cohort was divided into training and validation datasets.

Results

Six SNPs demonstrated to be predictors of acute (rs13116075, rs12565978, rs72550778 and rs7284767) and late toxicity (rs16837908 and rs61764370) either in the training or validation cohort. However, none of these SNPs were consistently associated with toxicity across both stages of analysis. The rs13116075, rs12565978 and rs16837908 were previously reported to be associated with RT toxicity. In the validation phase, SNP-based models showed limited predictive ability, with AUC values of 0.49 and c-index of 0.54 for acute and late toxicity, respectively. Models incorporating either clinical variables alone or in combination with SNPs achieved similar AUC and c-index values of ∼0.60 for acute and late toxicity, respectively. However, the combined model exhibited the highest predictive accuracy for acute and late toxicity, both in the training and the validation cohorts.

Conclusions

Our findings highlight the importance of combining clinical data with genetic markers to enhance the accuracy of models predicting RT toxicity in BC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Breast
Breast 医学-妇产科学
CiteScore
8.70
自引率
2.60%
发文量
165
审稿时长
59 days
期刊介绍: The Breast is an international, multidisciplinary journal for researchers and clinicians, which focuses on translational and clinical research for the advancement of breast cancer prevention, diagnosis and treatment of all stages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信