为可扩展和自适应分布式网络集成数字孪生和机器学习的节能云边缘协作模型

IF 3.8 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Lei Han, Min Lei, Guilin He, Yangyang Li, Yaopeng Zhao
{"title":"为可扩展和自适应分布式网络集成数字孪生和机器学习的节能云边缘协作模型","authors":"Lei Han,&nbsp;Min Lei,&nbsp;Guilin He,&nbsp;Yangyang Li,&nbsp;Yaopeng Zhao","doi":"10.1016/j.suscom.2025.101157","DOIUrl":null,"url":null,"abstract":"<div><div>The exponential growth of distributed networks, as seen in smart grids, IoT, and industrial automation, have added to the demands for effective and adaptive optimization systems. Traditional cloud solutions, while successful in providing global insights and scalability, often suffer from high latency and limited responsiveness, whereas edge-based models excel at instant decision making but lack global synergy and scale. In an effort to overcome these constraints, this paper proposes a novel Cloud-Edge Collaborative Optimization Framework, which leverages the latest machine learning and digital twin algorithms, to scale up distribution networks. The model relies on Long Short-Term Memory (LSTM) networks at the edge layer to forecast traffic in real time and make local decisions, and Multi-Agent Reinforcement Learning (MARL) at the cloud layer to coordinate resources across the globe. Digital twins facilitate real-time flexibility, dynamic simulation and feedback for continuous improvement. This proposed model was extensively tested against actual network datasets. We noted a 50 % reduction in latency compared to cloud-only architectures, with latency on average, baselined at 35.34 ms, reduced to 17.67 ms; additionally, we noted 23 % more resource utilization compared to edge-only setups based on the average of 10 simulation runs. We had real world IoT traffic data for the experimentation with throughput of 50–100 Mbps and PDR greater than 90 % (consistently), which demonstrates that the network operated robustly under changing conditions; we averaged the results for reliability and significance. This study provides an ideal foundation for future work on digital-twin-enhanced cloud-edge architectures.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"47 ","pages":"Article 101157"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient cloud-edge collaborative model integrating digital twins and machine learning for scalable and adaptive distributed networks\",\"authors\":\"Lei Han,&nbsp;Min Lei,&nbsp;Guilin He,&nbsp;Yangyang Li,&nbsp;Yaopeng Zhao\",\"doi\":\"10.1016/j.suscom.2025.101157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The exponential growth of distributed networks, as seen in smart grids, IoT, and industrial automation, have added to the demands for effective and adaptive optimization systems. Traditional cloud solutions, while successful in providing global insights and scalability, often suffer from high latency and limited responsiveness, whereas edge-based models excel at instant decision making but lack global synergy and scale. In an effort to overcome these constraints, this paper proposes a novel Cloud-Edge Collaborative Optimization Framework, which leverages the latest machine learning and digital twin algorithms, to scale up distribution networks. The model relies on Long Short-Term Memory (LSTM) networks at the edge layer to forecast traffic in real time and make local decisions, and Multi-Agent Reinforcement Learning (MARL) at the cloud layer to coordinate resources across the globe. Digital twins facilitate real-time flexibility, dynamic simulation and feedback for continuous improvement. This proposed model was extensively tested against actual network datasets. We noted a 50 % reduction in latency compared to cloud-only architectures, with latency on average, baselined at 35.34 ms, reduced to 17.67 ms; additionally, we noted 23 % more resource utilization compared to edge-only setups based on the average of 10 simulation runs. We had real world IoT traffic data for the experimentation with throughput of 50–100 Mbps and PDR greater than 90 % (consistently), which demonstrates that the network operated robustly under changing conditions; we averaged the results for reliability and significance. This study provides an ideal foundation for future work on digital-twin-enhanced cloud-edge architectures.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"47 \",\"pages\":\"Article 101157\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537925000782\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000782","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

分布式网络的指数级增长,如智能电网、物联网和工业自动化,增加了对有效和自适应优化系统的需求。传统的云解决方案虽然成功地提供了全球洞察力和可扩展性,但往往存在高延迟和有限的响应能力,而基于边缘的模型在即时决策方面表现出色,但缺乏全球协同作用和规模。为了克服这些限制,本文提出了一种新的云边缘协作优化框架,该框架利用最新的机器学习和数字孪生算法来扩大分销网络。该模型依靠边缘层的长短期记忆(LSTM)网络实时预测流量并做出局部决策,以及云层的多智能体强化学习(MARL)来协调全球资源。数字孪生促进实时灵活性,动态模拟和持续改进的反馈。该模型在实际网络数据集上进行了广泛的测试。我们注意到,与纯云架构相比,延迟减少了50% %,平均延迟从35.34 ms降至17.67 ms;此外,基于10次模拟运行的平均值,我们注意到与仅边缘设置相比,23 %的资源利用率更高。我们有真实世界的物联网流量数据进行实验,吞吐量为50-100 Mbps, PDR大于90 %(一致),这表明网络在不断变化的条件下运行稳健;我们对结果的可靠性和显著性取平均。这项研究为未来数字双增强云边缘架构的工作提供了理想的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-efficient cloud-edge collaborative model integrating digital twins and machine learning for scalable and adaptive distributed networks
The exponential growth of distributed networks, as seen in smart grids, IoT, and industrial automation, have added to the demands for effective and adaptive optimization systems. Traditional cloud solutions, while successful in providing global insights and scalability, often suffer from high latency and limited responsiveness, whereas edge-based models excel at instant decision making but lack global synergy and scale. In an effort to overcome these constraints, this paper proposes a novel Cloud-Edge Collaborative Optimization Framework, which leverages the latest machine learning and digital twin algorithms, to scale up distribution networks. The model relies on Long Short-Term Memory (LSTM) networks at the edge layer to forecast traffic in real time and make local decisions, and Multi-Agent Reinforcement Learning (MARL) at the cloud layer to coordinate resources across the globe. Digital twins facilitate real-time flexibility, dynamic simulation and feedback for continuous improvement. This proposed model was extensively tested against actual network datasets. We noted a 50 % reduction in latency compared to cloud-only architectures, with latency on average, baselined at 35.34 ms, reduced to 17.67 ms; additionally, we noted 23 % more resource utilization compared to edge-only setups based on the average of 10 simulation runs. We had real world IoT traffic data for the experimentation with throughput of 50–100 Mbps and PDR greater than 90 % (consistently), which demonstrates that the network operated robustly under changing conditions; we averaged the results for reliability and significance. This study provides an ideal foundation for future work on digital-twin-enhanced cloud-edge architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信