钒氧化物成分的加速发现:材料设计的WGAN-VAE框架

Danial Ebrahimzadeh, Sarah S. Sharif, Yaser M. Banad
{"title":"钒氧化物成分的加速发现:材料设计的WGAN-VAE框架","authors":"Danial Ebrahimzadeh,&nbsp;Sarah S. Sharif,&nbsp;Yaser M. Banad","doi":"10.1016/j.mtelec.2025.100155","DOIUrl":null,"url":null,"abstract":"<div><div>The discovery of novel materials with tailored electronic properties is crucial for modern device technologies, but time-consuming empirical methods hamper progress. We present an inverse design framework combining an enhanced Wasserstein Generative Adversarial Network (WGAN) with a specialized Variational Autoencoder (VAE) to accelerate the discovery of stable vanadium oxide (V–O) compositions. Our approach features (1) a WGAN with integrated stability constraints and formation energy predictions, enabling direct generation of thermodynamically feasible structures, and (2) a refined VAE capturing atomic positions and lattice parameters while maintaining chemical validity. Applying this framework, we generated 451 unique V–O compositions, with 91 stable and 44 metastable under rigorous thermodynamic criteria. Notably, we uncovered several novel V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> configurations with formation energies below the Materials Project convex hull, revealing previously unknown stable phases. Detailed spin-polarized DFT+U calculations showed distinct electronic behaviors, including promising half-metallic characteristics. Our approach outperforms existing methods in both quality and stability, demonstrating about 20<span><math><mtext>%</mtext></math></span> stability rate under strict criteria compared to earlier benchmarks. Additionally, phonon calculations performed on selected compositions confirm dynamic stability: minor imaginary modes at 0 K likely stem from finite-size effects or known phase transitions, suggesting that these materials remain stable or metastable in practical conditions. These findings establish our framework as a powerful tool for accelerated materials discovery and highlight promising V–O candidates for next-generation electronic devices.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"13 ","pages":"Article 100155"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated discovery of vanadium oxide compositions: A WGAN-VAE framework for materials design\",\"authors\":\"Danial Ebrahimzadeh,&nbsp;Sarah S. Sharif,&nbsp;Yaser M. Banad\",\"doi\":\"10.1016/j.mtelec.2025.100155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The discovery of novel materials with tailored electronic properties is crucial for modern device technologies, but time-consuming empirical methods hamper progress. We present an inverse design framework combining an enhanced Wasserstein Generative Adversarial Network (WGAN) with a specialized Variational Autoencoder (VAE) to accelerate the discovery of stable vanadium oxide (V–O) compositions. Our approach features (1) a WGAN with integrated stability constraints and formation energy predictions, enabling direct generation of thermodynamically feasible structures, and (2) a refined VAE capturing atomic positions and lattice parameters while maintaining chemical validity. Applying this framework, we generated 451 unique V–O compositions, with 91 stable and 44 metastable under rigorous thermodynamic criteria. Notably, we uncovered several novel V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> configurations with formation energies below the Materials Project convex hull, revealing previously unknown stable phases. Detailed spin-polarized DFT+U calculations showed distinct electronic behaviors, including promising half-metallic characteristics. Our approach outperforms existing methods in both quality and stability, demonstrating about 20<span><math><mtext>%</mtext></math></span> stability rate under strict criteria compared to earlier benchmarks. Additionally, phonon calculations performed on selected compositions confirm dynamic stability: minor imaginary modes at 0 K likely stem from finite-size effects or known phase transitions, suggesting that these materials remain stable or metastable in practical conditions. These findings establish our framework as a powerful tool for accelerated materials discovery and highlight promising V–O candidates for next-generation electronic devices.</div></div>\",\"PeriodicalId\":100893,\"journal\":{\"name\":\"Materials Today Electronics\",\"volume\":\"13 \",\"pages\":\"Article 100155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277294942500021X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277294942500021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发现具有定制电子特性的新材料对现代设备技术至关重要,但耗时的经验方法阻碍了进展。我们提出了一个逆设计框架,结合了增强的Wasserstein生成对抗网络(WGAN)和专门的变分自编码器(VAE),以加速发现稳定的氧化钒(V-O)成分。我们的方法具有以下特点:(1)具有集成稳定性约束和地层能量预测的WGAN,能够直接生成热力学上可行的结构;(2)在保持化学有效性的同时捕获原子位置和晶格参数的改进VAE。应用这一框架,我们生成了451种独特的V-O成分,其中91种在严格的热力学标准下稳定,44种亚稳。值得注意的是,我们发现了几种新的V2O3结构,其地层能量低于Materials Project凸包,揭示了以前未知的稳定相。详细的自旋极化DFT+U计算显示出不同的电子行为,包括有希望的半金属特征。我们的方法在质量和稳定性方面都优于现有的方法,与早期的基准测试相比,在严格的标准下显示出约20%的稳定性。此外,在选定的成分上进行的声子计算证实了动态稳定性:0 K下的小虚模可能源于有限尺寸效应或已知的相变,这表明这些材料在实际条件下保持稳定或亚稳态。这些发现使我们的框架成为加速材料发现的有力工具,并突出了下一代电子器件中有前途的V-O候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accelerated discovery of vanadium oxide compositions: A WGAN-VAE framework for materials design

Accelerated discovery of vanadium oxide compositions: A WGAN-VAE framework for materials design
The discovery of novel materials with tailored electronic properties is crucial for modern device technologies, but time-consuming empirical methods hamper progress. We present an inverse design framework combining an enhanced Wasserstein Generative Adversarial Network (WGAN) with a specialized Variational Autoencoder (VAE) to accelerate the discovery of stable vanadium oxide (V–O) compositions. Our approach features (1) a WGAN with integrated stability constraints and formation energy predictions, enabling direct generation of thermodynamically feasible structures, and (2) a refined VAE capturing atomic positions and lattice parameters while maintaining chemical validity. Applying this framework, we generated 451 unique V–O compositions, with 91 stable and 44 metastable under rigorous thermodynamic criteria. Notably, we uncovered several novel V2O3 configurations with formation energies below the Materials Project convex hull, revealing previously unknown stable phases. Detailed spin-polarized DFT+U calculations showed distinct electronic behaviors, including promising half-metallic characteristics. Our approach outperforms existing methods in both quality and stability, demonstrating about 20% stability rate under strict criteria compared to earlier benchmarks. Additionally, phonon calculations performed on selected compositions confirm dynamic stability: minor imaginary modes at 0 K likely stem from finite-size effects or known phase transitions, suggesting that these materials remain stable or metastable in practical conditions. These findings establish our framework as a powerful tool for accelerated materials discovery and highlight promising V–O candidates for next-generation electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信