Miao Su , Lei Liu , Yuxi Xie , Hui Peng , Chongjie Kang
{"title":"基于代表性体积元模拟的单向碳纤维增强聚合物弹性性能及强度预测","authors":"Miao Su , Lei Liu , Yuxi Xie , Hui Peng , Chongjie Kang","doi":"10.1016/j.cscm.2025.e04963","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical properties of unidirectional carbon fiber reinforced polymer (UD-CFRP), such as its elastic modulus and ultimate strength, are crucial and fundamental indicators. Examining these properties from a microscopic perspective through numerical simulations can provide valuable insights for material modification and the design of new materials. This study employs a micromechanics-based representative volume element (RVE) method to predict the macroscopic mechanical properties of UD-CFRP. The results demonstrate that the established RVE models accurately predict the elastic and shear modulus, as well as the ultimate tensile and compressive strength of UD-CFRP. Additionally, simulations of 300 RVE models with varying input parameter combinations were performed, generating a dataset that encompasses both microstructure parameters and macroscopic mechanical properties of UD-CFRP. Using the dataset, random forest regression models were created and SHAP analysis was performed to identify the key microstructural parameters with significant feature importance. Subsequently, we systematically investigated their effects on the macroscopic mechanical properties of UD-CFRP. In the end, simplified analytical prediction formulas were proposed to evaluate the macroscopic mechanical properties of UD-CFRP, demonstrating superior predictive performance compared to existing formulas.</div></div>","PeriodicalId":9641,"journal":{"name":"Case Studies in Construction Materials","volume":"23 ","pages":"Article e04963"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the elastic properties and strength of unidirectional carbon fiber reinforced polymers based on representative volume element simulation\",\"authors\":\"Miao Su , Lei Liu , Yuxi Xie , Hui Peng , Chongjie Kang\",\"doi\":\"10.1016/j.cscm.2025.e04963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanical properties of unidirectional carbon fiber reinforced polymer (UD-CFRP), such as its elastic modulus and ultimate strength, are crucial and fundamental indicators. Examining these properties from a microscopic perspective through numerical simulations can provide valuable insights for material modification and the design of new materials. This study employs a micromechanics-based representative volume element (RVE) method to predict the macroscopic mechanical properties of UD-CFRP. The results demonstrate that the established RVE models accurately predict the elastic and shear modulus, as well as the ultimate tensile and compressive strength of UD-CFRP. Additionally, simulations of 300 RVE models with varying input parameter combinations were performed, generating a dataset that encompasses both microstructure parameters and macroscopic mechanical properties of UD-CFRP. Using the dataset, random forest regression models were created and SHAP analysis was performed to identify the key microstructural parameters with significant feature importance. Subsequently, we systematically investigated their effects on the macroscopic mechanical properties of UD-CFRP. In the end, simplified analytical prediction formulas were proposed to evaluate the macroscopic mechanical properties of UD-CFRP, demonstrating superior predictive performance compared to existing formulas.</div></div>\",\"PeriodicalId\":9641,\"journal\":{\"name\":\"Case Studies in Construction Materials\",\"volume\":\"23 \",\"pages\":\"Article e04963\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Construction Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214509525007612\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Construction Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214509525007612","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Prediction of the elastic properties and strength of unidirectional carbon fiber reinforced polymers based on representative volume element simulation
The mechanical properties of unidirectional carbon fiber reinforced polymer (UD-CFRP), such as its elastic modulus and ultimate strength, are crucial and fundamental indicators. Examining these properties from a microscopic perspective through numerical simulations can provide valuable insights for material modification and the design of new materials. This study employs a micromechanics-based representative volume element (RVE) method to predict the macroscopic mechanical properties of UD-CFRP. The results demonstrate that the established RVE models accurately predict the elastic and shear modulus, as well as the ultimate tensile and compressive strength of UD-CFRP. Additionally, simulations of 300 RVE models with varying input parameter combinations were performed, generating a dataset that encompasses both microstructure parameters and macroscopic mechanical properties of UD-CFRP. Using the dataset, random forest regression models were created and SHAP analysis was performed to identify the key microstructural parameters with significant feature importance. Subsequently, we systematically investigated their effects on the macroscopic mechanical properties of UD-CFRP. In the end, simplified analytical prediction formulas were proposed to evaluate the macroscopic mechanical properties of UD-CFRP, demonstrating superior predictive performance compared to existing formulas.
期刊介绍:
Case Studies in Construction Materials provides a forum for the rapid publication of short, structured Case Studies on construction materials. In addition, the journal also publishes related Short Communications, Full length research article and Comprehensive review papers (by invitation).
The journal will provide an essential compendium of case studies for practicing engineers, designers, researchers and other practitioners who are interested in all aspects construction materials. The journal will publish new and novel case studies, but will also provide a forum for the publication of high quality descriptions of classic construction material problems and solutions.