非凸网格弹性界面问题的自稳定弱Galerkin方法

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Chunmei Wang , Shangyou Zhang
{"title":"非凸网格弹性界面问题的自稳定弱Galerkin方法","authors":"Chunmei Wang ,&nbsp;Shangyou Zhang","doi":"10.1016/j.cam.2025.116854","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces an auto-stabilized weak Galerkin (WG) finite element method for elasticity interface problems on general polygonal and polyhedral meshes, without requiring convexity constraints. The method utilizes bubble functions as key analytical tools, eliminating the need for stabilizers typically used in traditional WG methods and leading to a more streamlined formulation. The proposed method is symmetric, positive definite, and easy to implement. Optimal-order error estimates are derived for the WG approximations in the discrete <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm, assuming the exact solution has sufficient smoothness. Numerical experiments validate the accuracy and efficiency of the auto-stabilized WG method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"473 ","pages":"Article 116854"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An auto-stabilized weak Galerkin method for elasticity interface problems on nonconvex meshes\",\"authors\":\"Chunmei Wang ,&nbsp;Shangyou Zhang\",\"doi\":\"10.1016/j.cam.2025.116854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces an auto-stabilized weak Galerkin (WG) finite element method for elasticity interface problems on general polygonal and polyhedral meshes, without requiring convexity constraints. The method utilizes bubble functions as key analytical tools, eliminating the need for stabilizers typically used in traditional WG methods and leading to a more streamlined formulation. The proposed method is symmetric, positive definite, and easy to implement. Optimal-order error estimates are derived for the WG approximations in the discrete <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm, assuming the exact solution has sufficient smoothness. Numerical experiments validate the accuracy and efficiency of the auto-stabilized WG method.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"473 \",\"pages\":\"Article 116854\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725003681\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725003681","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种自稳定弱Galerkin (WG)有限元方法,用于一般多边形和多面体网格的弹性界面问题,不需要凸性约束。该方法利用气泡函数作为关键的分析工具,消除了传统WG方法中通常使用的稳定剂的需要,从而使配方更加精简。该方法具有对称、正定、易于实现等特点。假设精确解具有足够的平滑性,为离散h1范数中的WG近似导出了最优阶误差估计。数值实验验证了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An auto-stabilized weak Galerkin method for elasticity interface problems on nonconvex meshes
This paper introduces an auto-stabilized weak Galerkin (WG) finite element method for elasticity interface problems on general polygonal and polyhedral meshes, without requiring convexity constraints. The method utilizes bubble functions as key analytical tools, eliminating the need for stabilizers typically used in traditional WG methods and leading to a more streamlined formulation. The proposed method is symmetric, positive definite, and easy to implement. Optimal-order error estimates are derived for the WG approximations in the discrete H1-norm, assuming the exact solution has sufficient smoothness. Numerical experiments validate the accuracy and efficiency of the auto-stabilized WG method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信