超声辅助制造可生物降解和导电聚苯胺/西米/石墨烯复合纳米材料的可持续和柔性电子

IF 6 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Mohammed E. Ali Mohsin , Suleiman Mousa , Sohail M.A.K. Mohammed , Agus Arsad
{"title":"超声辅助制造可生物降解和导电聚苯胺/西米/石墨烯复合纳米材料的可持续和柔性电子","authors":"Mohammed E. Ali Mohsin ,&nbsp;Suleiman Mousa ,&nbsp;Sohail M.A.K. Mohammed ,&nbsp;Agus Arsad","doi":"10.1016/j.polymertesting.2025.108908","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for high-performance portable electronic devices has intensified electromagnetic interference (EMI) pollution and electronic waste (e-waste), necessitating the development of sustainable conductive materials. This study introduces a novel ultrasound-assisted in situ oxidative polymerization method to fabricate polyaniline (PANI)/sago/graphene (PSG) hybrid nanocomposites. Morphological analyses (SEM and TEM) confirmed uniform dispersion of graphene nanoplatelets, spectroscopic studies (FTIR and UV–Vis) revealed enhanced molecular interactions, and thermal analysis (TGA) demonstrated superior thermal stability with a T<sub>50</sub> of 497 °C. These interactions produced a low percolation threshold of 0.95 wt% GNP, a maximum DC conductivity of 3.44 × 10<sup>−1</sup> S/cm, significantly surpassing that of PANI/Sago blend alone (2.17 × 10<sup>−3</sup> S/cm). AC conductivity analysis revealed a broad plateau (10<sup>2</sup>–10<sup>6</sup> Hz) via tunnelling and hopping mechanisms, with electrical performance retained up to 100 °C. These properties, combined with sago starch's biodegradability, position PSG nanocomposites as eco-friendly candidates for flexible electronics, EMI shielding, and biodegradable transient devices.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"150 ","pages":"Article 108908"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-assisted fabrication of biodegradable and conductive PANI/sago/graphene hybrid nanocomposites for sustainable and flexible electronics\",\"authors\":\"Mohammed E. Ali Mohsin ,&nbsp;Suleiman Mousa ,&nbsp;Sohail M.A.K. Mohammed ,&nbsp;Agus Arsad\",\"doi\":\"10.1016/j.polymertesting.2025.108908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing demand for high-performance portable electronic devices has intensified electromagnetic interference (EMI) pollution and electronic waste (e-waste), necessitating the development of sustainable conductive materials. This study introduces a novel ultrasound-assisted in situ oxidative polymerization method to fabricate polyaniline (PANI)/sago/graphene (PSG) hybrid nanocomposites. Morphological analyses (SEM and TEM) confirmed uniform dispersion of graphene nanoplatelets, spectroscopic studies (FTIR and UV–Vis) revealed enhanced molecular interactions, and thermal analysis (TGA) demonstrated superior thermal stability with a T<sub>50</sub> of 497 °C. These interactions produced a low percolation threshold of 0.95 wt% GNP, a maximum DC conductivity of 3.44 × 10<sup>−1</sup> S/cm, significantly surpassing that of PANI/Sago blend alone (2.17 × 10<sup>−3</sup> S/cm). AC conductivity analysis revealed a broad plateau (10<sup>2</sup>–10<sup>6</sup> Hz) via tunnelling and hopping mechanisms, with electrical performance retained up to 100 °C. These properties, combined with sago starch's biodegradability, position PSG nanocomposites as eco-friendly candidates for flexible electronics, EMI shielding, and biodegradable transient devices.</div></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"150 \",\"pages\":\"Article 108908\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941825002223\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825002223","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

对高性能便携式电子设备日益增长的需求加剧了电磁干扰(EMI)污染和电子垃圾(e-waste),需要开发可持续的导电材料。介绍了一种超声辅助原位氧化聚合制备聚苯胺/西米/石墨烯复合材料的新方法。形态学分析(SEM和TEM)证实了石墨烯纳米薄片的均匀分散,光谱研究(FTIR和UV-Vis)显示了分子相互作用的增强,热分析(TGA)显示了优异的热稳定性,T50为497°C。这些相互作用产生了0.95 wt% GNP的低渗透阈值,最大直流电导率为3.44 × 10−1 S/cm,显著超过了聚苯胺/西米共混物(2.17 × 10−3 S/cm)。交流电导率分析显示,通过隧穿和跳变机制,交流电导率平台宽(102-106 Hz),电性能可保持到100°C。这些特性,再加上西米淀粉的可生物降解性,使PSG纳米复合材料成为柔性电子产品、EMI屏蔽和可生物降解瞬态器件的环保候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasound-assisted fabrication of biodegradable and conductive PANI/sago/graphene hybrid nanocomposites for sustainable and flexible electronics
The growing demand for high-performance portable electronic devices has intensified electromagnetic interference (EMI) pollution and electronic waste (e-waste), necessitating the development of sustainable conductive materials. This study introduces a novel ultrasound-assisted in situ oxidative polymerization method to fabricate polyaniline (PANI)/sago/graphene (PSG) hybrid nanocomposites. Morphological analyses (SEM and TEM) confirmed uniform dispersion of graphene nanoplatelets, spectroscopic studies (FTIR and UV–Vis) revealed enhanced molecular interactions, and thermal analysis (TGA) demonstrated superior thermal stability with a T50 of 497 °C. These interactions produced a low percolation threshold of 0.95 wt% GNP, a maximum DC conductivity of 3.44 × 10−1 S/cm, significantly surpassing that of PANI/Sago blend alone (2.17 × 10−3 S/cm). AC conductivity analysis revealed a broad plateau (102–106 Hz) via tunnelling and hopping mechanisms, with electrical performance retained up to 100 °C. These properties, combined with sago starch's biodegradability, position PSG nanocomposites as eco-friendly candidates for flexible electronics, EMI shielding, and biodegradable transient devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Testing
Polymer Testing 工程技术-材料科学:表征与测试
CiteScore
10.70
自引率
5.90%
发文量
328
审稿时长
44 days
期刊介绍: Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization. The scope includes but is not limited to the following main topics: Novel testing methods and Chemical analysis • mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology Physical properties and behaviour of novel polymer systems • nanoscale properties, morphology, transport properties Degradation and recycling of polymeric materials when combined with novel testing or characterization methods • degradation, biodegradation, ageing and fire retardancy Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信