图形处理单元结构网格上细粒度并行线性迭代计算空气动力学的有效性

IF 3 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Aditya Kashi , Siva Nadarajah
{"title":"图形处理单元结构网格上细粒度并行线性迭代计算空气动力学的有效性","authors":"Aditya Kashi ,&nbsp;Siva Nadarajah","doi":"10.1016/j.compfluid.2025.106714","DOIUrl":null,"url":null,"abstract":"<div><div>Modern high-performance computing (HPC) systems are increasingly built with graphics processing units (GPUs) as the primary computing device and are increasingly targeted at highly parallel applications. It is thus of great importance to make efficient use of GPUs for time-implicit solvers for computational fluid dynamics. While highly parallel linear relaxations, such as Jacobi, have existed for a long time, they often suffer from poor convergence rates. We demonstrate that a new crop of fine-grain parallel point-block linear iterations drawn from asynchronous iterations and sparse approximate inverses can achieve robust and scalable speedups over the current state of practice – multicolour Gauss–Seidel iterations – on three generations of GPUs in the context of nonlinear multigrid solvers on multi-block structured grids for compressible Reynolds-averaged Navier–Stokes (RANS) simulations.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"299 ","pages":"Article 106714"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the effectiveness of fine-grain parallel linear iterations for computational aerodynamics on structured grids for graphics processing units\",\"authors\":\"Aditya Kashi ,&nbsp;Siva Nadarajah\",\"doi\":\"10.1016/j.compfluid.2025.106714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modern high-performance computing (HPC) systems are increasingly built with graphics processing units (GPUs) as the primary computing device and are increasingly targeted at highly parallel applications. It is thus of great importance to make efficient use of GPUs for time-implicit solvers for computational fluid dynamics. While highly parallel linear relaxations, such as Jacobi, have existed for a long time, they often suffer from poor convergence rates. We demonstrate that a new crop of fine-grain parallel point-block linear iterations drawn from asynchronous iterations and sparse approximate inverses can achieve robust and scalable speedups over the current state of practice – multicolour Gauss–Seidel iterations – on three generations of GPUs in the context of nonlinear multigrid solvers on multi-block structured grids for compressible Reynolds-averaged Navier–Stokes (RANS) simulations.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"299 \",\"pages\":\"Article 106714\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025001744\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025001744","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

现代高性能计算(HPC)系统越来越多地以图形处理单元(gpu)作为主要计算设备,并越来越多地针对高度并行应用。因此,如何有效地利用gpu来求解计算流体动力学的时间隐式求解具有重要的意义。虽然高度平行的线性松弛(如Jacobi)已经存在了很长时间,但它们的收敛速度往往很差。我们证明了从异步迭代和稀疏近似逆中提取的一种新的细粒度并行点块线性迭代可以在三代gpu上实现鲁棒和可扩展的加速,超过当前的实践状态-多色高斯-塞德尔迭代-在多块结构网格上的非线性多网格解算器的背景下,用于可压缩的reynolds -average Navier-Stokes (RANS)模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the effectiveness of fine-grain parallel linear iterations for computational aerodynamics on structured grids for graphics processing units
Modern high-performance computing (HPC) systems are increasingly built with graphics processing units (GPUs) as the primary computing device and are increasingly targeted at highly parallel applications. It is thus of great importance to make efficient use of GPUs for time-implicit solvers for computational fluid dynamics. While highly parallel linear relaxations, such as Jacobi, have existed for a long time, they often suffer from poor convergence rates. We demonstrate that a new crop of fine-grain parallel point-block linear iterations drawn from asynchronous iterations and sparse approximate inverses can achieve robust and scalable speedups over the current state of practice – multicolour Gauss–Seidel iterations – on three generations of GPUs in the context of nonlinear multigrid solvers on multi-block structured grids for compressible Reynolds-averaged Navier–Stokes (RANS) simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信