Seyyedeh Rozita Ebrahimi , Mikael Rönnqvist , Mustapha Ouhimmou , Paul Stuart
{"title":"基于林业、农业和城市固体废物价值链的可持续生物能源物流规划的系统文献综述","authors":"Seyyedeh Rozita Ebrahimi , Mikael Rönnqvist , Mustapha Ouhimmou , Paul Stuart","doi":"10.1016/j.ecmx.2025.101105","DOIUrl":null,"url":null,"abstract":"<div><div>Sustainable bioenergy production is essential for mitigating greenhouse gas emissions and reducing dependence on fossil fuels. The logistics of managing dispersed and low-value biomass from forestry, agricultural, and municipal solid waste value chains pose significant challenges, including high transportation costs, seasonal availability, and storage limitations. This systematic literature review examines the critical operations, including collection, transportation, and preprocessing, necessary to optimize bioenergy supply chains. A central contribution of this paper is an analysis of integrating biomass value chains through collaborative models that leverage shared infrastructure and adaptive logistics to enhance cost efficiency and resource utilization. It also identifies critical gaps in optimization models, particularly the lack of comprehensive multi-biomass value chain integration frameworks and limited consideration of uncertainties in logistics planning. The analysis highlights that while mixed integer linear programming models dominate, they often overlook cross-chain synergies and logistics. By examining 112 articles, we show that integrating forestry, agricultural, and municipal solid waste value chains through shared infrastructure and collaborative planning can significantly reduce transportation costs, enhance supply stability, and improve resource utilization in bioenergy systems.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"27 ","pages":"Article 101105"},"PeriodicalIF":7.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic literature review of the logistics planning for sustainable bioenergy based on Forestry, Agricultural, and municipal solid waste value chains\",\"authors\":\"Seyyedeh Rozita Ebrahimi , Mikael Rönnqvist , Mustapha Ouhimmou , Paul Stuart\",\"doi\":\"10.1016/j.ecmx.2025.101105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sustainable bioenergy production is essential for mitigating greenhouse gas emissions and reducing dependence on fossil fuels. The logistics of managing dispersed and low-value biomass from forestry, agricultural, and municipal solid waste value chains pose significant challenges, including high transportation costs, seasonal availability, and storage limitations. This systematic literature review examines the critical operations, including collection, transportation, and preprocessing, necessary to optimize bioenergy supply chains. A central contribution of this paper is an analysis of integrating biomass value chains through collaborative models that leverage shared infrastructure and adaptive logistics to enhance cost efficiency and resource utilization. It also identifies critical gaps in optimization models, particularly the lack of comprehensive multi-biomass value chain integration frameworks and limited consideration of uncertainties in logistics planning. The analysis highlights that while mixed integer linear programming models dominate, they often overlook cross-chain synergies and logistics. By examining 112 articles, we show that integrating forestry, agricultural, and municipal solid waste value chains through shared infrastructure and collaborative planning can significantly reduce transportation costs, enhance supply stability, and improve resource utilization in bioenergy systems.</div></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":\"27 \",\"pages\":\"Article 101105\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174525002375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174525002375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A systematic literature review of the logistics planning for sustainable bioenergy based on Forestry, Agricultural, and municipal solid waste value chains
Sustainable bioenergy production is essential for mitigating greenhouse gas emissions and reducing dependence on fossil fuels. The logistics of managing dispersed and low-value biomass from forestry, agricultural, and municipal solid waste value chains pose significant challenges, including high transportation costs, seasonal availability, and storage limitations. This systematic literature review examines the critical operations, including collection, transportation, and preprocessing, necessary to optimize bioenergy supply chains. A central contribution of this paper is an analysis of integrating biomass value chains through collaborative models that leverage shared infrastructure and adaptive logistics to enhance cost efficiency and resource utilization. It also identifies critical gaps in optimization models, particularly the lack of comprehensive multi-biomass value chain integration frameworks and limited consideration of uncertainties in logistics planning. The analysis highlights that while mixed integer linear programming models dominate, they often overlook cross-chain synergies and logistics. By examining 112 articles, we show that integrating forestry, agricultural, and municipal solid waste value chains through shared infrastructure and collaborative planning can significantly reduce transportation costs, enhance supply stability, and improve resource utilization in bioenergy systems.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.