{"title":"使用超参数调优深度学习技术在查谟和克什米尔拉杰里地区进行森林火灾易感性和敏感性分析的高级建模","authors":"Lucky Sharma , Mohd Rihan , Narendra Kumar Rana , Shiva Kant Dube , Md. Sarfaraz Asgher","doi":"10.1016/j.asr.2025.04.076","DOIUrl":null,"url":null,"abstract":"<div><div>Forest resources are crucial for sustaining the global population, regulating climate services, and maintaining overall ecological balance. However, forest fires are causing a significant loss of forest cover worldwide. In this context, advanced deep learning techniques, which are novel to date, have been utilized to prepare forest fire susceptibility mapping. The present study aimed to predict forest fire susceptibility using three hyper-tuned techniques: deep neural network (DNN), elman neural network (ENN), and convolutional neural network (CNN). To identify the importance of influencing factors, sensitivity analysis was conducted using the DNN. The forest fire susceptibility map (FFSM) was categorized into five susceptibility zones: very high, high, moderate, low, and very low. Results indicated that the southern and southeastern parts of the study area are most prone to forest fires. The proportion of high susceptibility zone in the study area was found to be 34% for DNN, 37% for ENN, and 30% for CNN. Among all the models, DNN outperformed the others, achieving the highest accuracy of 0.8925, compared to ENN (0.8825) and CNN (0.87). Sensitivity analysis further revealed that evapotranspiration, temperature, land surface temperature (LST), distance to roads, aridity, and elevation were the most influential factors contributing to forest fires in the region. This study demonstrates an advanced and globally relevant approach to forest fire susceptibility analysis. The findings may be crucial for stakeholders and policymakers to make informed decisions regarding effective forest fire management and to protect vulnerable communities from unexpected losses.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"76 2","pages":"Pages 614-632"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced modeling of forest fire susceptibility and sensitivity analysis using hyperparameter-tuned deep learning techniques in the Rajouri district, Jammu and Kashmir\",\"authors\":\"Lucky Sharma , Mohd Rihan , Narendra Kumar Rana , Shiva Kant Dube , Md. Sarfaraz Asgher\",\"doi\":\"10.1016/j.asr.2025.04.076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Forest resources are crucial for sustaining the global population, regulating climate services, and maintaining overall ecological balance. However, forest fires are causing a significant loss of forest cover worldwide. In this context, advanced deep learning techniques, which are novel to date, have been utilized to prepare forest fire susceptibility mapping. The present study aimed to predict forest fire susceptibility using three hyper-tuned techniques: deep neural network (DNN), elman neural network (ENN), and convolutional neural network (CNN). To identify the importance of influencing factors, sensitivity analysis was conducted using the DNN. The forest fire susceptibility map (FFSM) was categorized into five susceptibility zones: very high, high, moderate, low, and very low. Results indicated that the southern and southeastern parts of the study area are most prone to forest fires. The proportion of high susceptibility zone in the study area was found to be 34% for DNN, 37% for ENN, and 30% for CNN. Among all the models, DNN outperformed the others, achieving the highest accuracy of 0.8925, compared to ENN (0.8825) and CNN (0.87). Sensitivity analysis further revealed that evapotranspiration, temperature, land surface temperature (LST), distance to roads, aridity, and elevation were the most influential factors contributing to forest fires in the region. This study demonstrates an advanced and globally relevant approach to forest fire susceptibility analysis. The findings may be crucial for stakeholders and policymakers to make informed decisions regarding effective forest fire management and to protect vulnerable communities from unexpected losses.</div></div>\",\"PeriodicalId\":50850,\"journal\":{\"name\":\"Advances in Space Research\",\"volume\":\"76 2\",\"pages\":\"Pages 614-632\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Space Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273117725004302\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117725004302","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Advanced modeling of forest fire susceptibility and sensitivity analysis using hyperparameter-tuned deep learning techniques in the Rajouri district, Jammu and Kashmir
Forest resources are crucial for sustaining the global population, regulating climate services, and maintaining overall ecological balance. However, forest fires are causing a significant loss of forest cover worldwide. In this context, advanced deep learning techniques, which are novel to date, have been utilized to prepare forest fire susceptibility mapping. The present study aimed to predict forest fire susceptibility using three hyper-tuned techniques: deep neural network (DNN), elman neural network (ENN), and convolutional neural network (CNN). To identify the importance of influencing factors, sensitivity analysis was conducted using the DNN. The forest fire susceptibility map (FFSM) was categorized into five susceptibility zones: very high, high, moderate, low, and very low. Results indicated that the southern and southeastern parts of the study area are most prone to forest fires. The proportion of high susceptibility zone in the study area was found to be 34% for DNN, 37% for ENN, and 30% for CNN. Among all the models, DNN outperformed the others, achieving the highest accuracy of 0.8925, compared to ENN (0.8825) and CNN (0.87). Sensitivity analysis further revealed that evapotranspiration, temperature, land surface temperature (LST), distance to roads, aridity, and elevation were the most influential factors contributing to forest fires in the region. This study demonstrates an advanced and globally relevant approach to forest fire susceptibility analysis. The findings may be crucial for stakeholders and policymakers to make informed decisions regarding effective forest fire management and to protect vulnerable communities from unexpected losses.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.