基于回归模型的x射线脉冲星消噪变压器

IF 2.8 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Zhiwei Huang , Hua Zong , Liming Gao , Kunfeng Lu , Yujia Xie , Qian Xu
{"title":"基于回归模型的x射线脉冲星消噪变压器","authors":"Zhiwei Huang ,&nbsp;Hua Zong ,&nbsp;Liming Gao ,&nbsp;Kunfeng Lu ,&nbsp;Yujia Xie ,&nbsp;Qian Xu","doi":"10.1016/j.asr.2025.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>To improve noise suppression and adaptability in pulsar observation profile denoising algorithms, this paper proposes a method utilizing a transformer based on regression model. Initially, pulsar photon time-series data are transformed into pulse profiles, followed by standardization and data augmentation. Subsequently, the Conv1d module extracts features directly from observed pulsar profiles and standard profiles, converting profile contextual information into intermediate semantic features. The Transformer module is then employed for deep feature extraction and regression analysis on profile features, resulting in denoised observed profiles. Crab and PSR B1509-58 data from the NICER telescope are used to validate the proposed method. The simulation experiments demonstrate that under the conditions where the observation duration of the Crab pulsar is less than 15 s and that of PSR B1509-58 is below 2500 s, the proposed method achieves average signal-to-noise ratios of 18.7796 dB and 10.1675 dB, average Pearson correlation coefficients of 0.9921 and 0.9482, and average phase offsets of 0.0417 ms and 0.6639 ms, respectively. These results outperform those obtained using wavelet transform denoising and kernel regression denoising methods.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"76 2","pages":"Pages 1068-1079"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer based on regression model for the denoising of X-ray pulsar profiles\",\"authors\":\"Zhiwei Huang ,&nbsp;Hua Zong ,&nbsp;Liming Gao ,&nbsp;Kunfeng Lu ,&nbsp;Yujia Xie ,&nbsp;Qian Xu\",\"doi\":\"10.1016/j.asr.2025.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To improve noise suppression and adaptability in pulsar observation profile denoising algorithms, this paper proposes a method utilizing a transformer based on regression model. Initially, pulsar photon time-series data are transformed into pulse profiles, followed by standardization and data augmentation. Subsequently, the Conv1d module extracts features directly from observed pulsar profiles and standard profiles, converting profile contextual information into intermediate semantic features. The Transformer module is then employed for deep feature extraction and regression analysis on profile features, resulting in denoised observed profiles. Crab and PSR B1509-58 data from the NICER telescope are used to validate the proposed method. The simulation experiments demonstrate that under the conditions where the observation duration of the Crab pulsar is less than 15 s and that of PSR B1509-58 is below 2500 s, the proposed method achieves average signal-to-noise ratios of 18.7796 dB and 10.1675 dB, average Pearson correlation coefficients of 0.9921 and 0.9482, and average phase offsets of 0.0417 ms and 0.6639 ms, respectively. These results outperform those obtained using wavelet transform denoising and kernel regression denoising methods.</div></div>\",\"PeriodicalId\":50850,\"journal\":{\"name\":\"Advances in Space Research\",\"volume\":\"76 2\",\"pages\":\"Pages 1068-1079\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Space Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273117725004661\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117725004661","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

为了提高脉冲星观测剖面去噪算法的噪声抑制能力和适应性,提出了一种基于回归模型的变压器去噪方法。首先将脉冲星光子时间序列数据转换成脉冲剖面,然后进行标准化和数据增强。随后,Conv1d模块直接从观测到的脉冲星剖面和标准剖面中提取特征,将剖面上下文信息转换为中间语义特征。然后使用Transformer模块对剖面特征进行深度特征提取和回归分析,从而得到去噪的观测剖面。利用NICER望远镜的螃蟹和PSR B1509-58数据验证了所提出的方法。仿真实验表明,在蟹状脉冲星观测时间小于15 s、PSR B1509-58观测时间小于2500 s的情况下,所提方法的平均信噪比分别为18.7796 dB和10.1675 dB,平均Pearson相关系数分别为0.9921和0.9482,平均相位偏移分别为0.0417 ms和0.6639 ms。结果优于小波变换去噪和核回归去噪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer based on regression model for the denoising of X-ray pulsar profiles
To improve noise suppression and adaptability in pulsar observation profile denoising algorithms, this paper proposes a method utilizing a transformer based on regression model. Initially, pulsar photon time-series data are transformed into pulse profiles, followed by standardization and data augmentation. Subsequently, the Conv1d module extracts features directly from observed pulsar profiles and standard profiles, converting profile contextual information into intermediate semantic features. The Transformer module is then employed for deep feature extraction and regression analysis on profile features, resulting in denoised observed profiles. Crab and PSR B1509-58 data from the NICER telescope are used to validate the proposed method. The simulation experiments demonstrate that under the conditions where the observation duration of the Crab pulsar is less than 15 s and that of PSR B1509-58 is below 2500 s, the proposed method achieves average signal-to-noise ratios of 18.7796 dB and 10.1675 dB, average Pearson correlation coefficients of 0.9921 and 0.9482, and average phase offsets of 0.0417 ms and 0.6639 ms, respectively. These results outperform those obtained using wavelet transform denoising and kernel regression denoising methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Space Research
Advances in Space Research 地学天文-地球科学综合
CiteScore
5.20
自引率
11.50%
发文量
800
审稿时长
5.8 months
期刊介绍: The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc. NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR). All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信