{"title":"液晶弹性体声子晶体板的光带调谐","authors":"Tianshu Liang, Ying Liu, Qingxiao Gu","doi":"10.1016/j.wavemoti.2025.103599","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the light sensitivity of liquid crystal elastomers, a Grille-like phononic crystal plate is proposed in this paper with the aim to achieve multi-mode band opto-tuning. The indirect coupling strategy is used to determine the opto-band variation in phononic crystal plate. The spontaneous deformation of the phononic crystal plate is firstly investigated. Then the wave dispersion in the opto-deformed phononic crystal plate is explored. The band structure in undeformed phononic crystal plate is also given for comparison. The effects of geometrical sizes of unit cells and light intensity are clarified in detail. The result indicates that the band structures in phononic crystal plates can be tuned by adjusting the light intensity, which displays sensitive dependence on the unit cell geometrical sizes. The phononic crystal plate with opto-deformable slabs provides a choice in design of opto-controlling phononic crystal plate, and has prospective applications in optical controlling of devices and systems.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103599"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opto-band tuning in a liquid crystal elastomer phononic crystal plate\",\"authors\":\"Tianshu Liang, Ying Liu, Qingxiao Gu\",\"doi\":\"10.1016/j.wavemoti.2025.103599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on the light sensitivity of liquid crystal elastomers, a Grille-like phononic crystal plate is proposed in this paper with the aim to achieve multi-mode band opto-tuning. The indirect coupling strategy is used to determine the opto-band variation in phononic crystal plate. The spontaneous deformation of the phononic crystal plate is firstly investigated. Then the wave dispersion in the opto-deformed phononic crystal plate is explored. The band structure in undeformed phononic crystal plate is also given for comparison. The effects of geometrical sizes of unit cells and light intensity are clarified in detail. The result indicates that the band structures in phononic crystal plates can be tuned by adjusting the light intensity, which displays sensitive dependence on the unit cell geometrical sizes. The phononic crystal plate with opto-deformable slabs provides a choice in design of opto-controlling phononic crystal plate, and has prospective applications in optical controlling of devices and systems.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"139 \",\"pages\":\"Article 103599\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212525001106\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525001106","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Opto-band tuning in a liquid crystal elastomer phononic crystal plate
Based on the light sensitivity of liquid crystal elastomers, a Grille-like phononic crystal plate is proposed in this paper with the aim to achieve multi-mode band opto-tuning. The indirect coupling strategy is used to determine the opto-band variation in phononic crystal plate. The spontaneous deformation of the phononic crystal plate is firstly investigated. Then the wave dispersion in the opto-deformed phononic crystal plate is explored. The band structure in undeformed phononic crystal plate is also given for comparison. The effects of geometrical sizes of unit cells and light intensity are clarified in detail. The result indicates that the band structures in phononic crystal plates can be tuned by adjusting the light intensity, which displays sensitive dependence on the unit cell geometrical sizes. The phononic crystal plate with opto-deformable slabs provides a choice in design of opto-controlling phononic crystal plate, and has prospective applications in optical controlling of devices and systems.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.