Ruth Veevers , Steffen Ostendorp , Anna Ostendorp , Julia Kehr , Richard J. Morris
{"title":"通过模拟引导的rna结合蛋白PARCL的靶向工程控制液-液相分离","authors":"Ruth Veevers , Steffen Ostendorp , Anna Ostendorp , Julia Kehr , Richard J. Morris","doi":"10.1016/j.isci.2025.112852","DOIUrl":null,"url":null,"abstract":"<div><div>The Phloem-Associated RNA-Chaperone-Like (PARCL) protein is a plant-specific RNA-binding protein (RBP) that is highly abundant in the phloem. PARCL has been observed to form large biomolecular condensates that move within the phloem stream, potentially being involved in RNA transport. Here, we present results on unraveling drivers for PARCL’s phase separation. We used coarse-grained molecular dynamics simulations to compute a residue interaction map that identifies candidate residues involved in phase separation. Subsequent simulations with mutations of candidate residues resulted in disrupted condensation, supporting their involvement in phase separation. We performed <em>in vitro</em> and <em>in vivo</em> experiments to validate these predictions. To investigate the RNA-binding of PARCL, we added microRNA to the simulations and identified a short region of PARCL that consistently made contact with the miRNA in agreement with bioinformatics predictions and experiments. We discuss the implications of our findings in terms of model-guided engineering of biomolecular condensates.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 7","pages":"Article 112852"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled liquid-liquid phase separation via the simulation-guided, targeted engineering of the RNA-binding protein PARCL\",\"authors\":\"Ruth Veevers , Steffen Ostendorp , Anna Ostendorp , Julia Kehr , Richard J. Morris\",\"doi\":\"10.1016/j.isci.2025.112852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Phloem-Associated RNA-Chaperone-Like (PARCL) protein is a plant-specific RNA-binding protein (RBP) that is highly abundant in the phloem. PARCL has been observed to form large biomolecular condensates that move within the phloem stream, potentially being involved in RNA transport. Here, we present results on unraveling drivers for PARCL’s phase separation. We used coarse-grained molecular dynamics simulations to compute a residue interaction map that identifies candidate residues involved in phase separation. Subsequent simulations with mutations of candidate residues resulted in disrupted condensation, supporting their involvement in phase separation. We performed <em>in vitro</em> and <em>in vivo</em> experiments to validate these predictions. To investigate the RNA-binding of PARCL, we added microRNA to the simulations and identified a short region of PARCL that consistently made contact with the miRNA in agreement with bioinformatics predictions and experiments. We discuss the implications of our findings in terms of model-guided engineering of biomolecular condensates.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"28 7\",\"pages\":\"Article 112852\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004225011137\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225011137","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Controlled liquid-liquid phase separation via the simulation-guided, targeted engineering of the RNA-binding protein PARCL
The Phloem-Associated RNA-Chaperone-Like (PARCL) protein is a plant-specific RNA-binding protein (RBP) that is highly abundant in the phloem. PARCL has been observed to form large biomolecular condensates that move within the phloem stream, potentially being involved in RNA transport. Here, we present results on unraveling drivers for PARCL’s phase separation. We used coarse-grained molecular dynamics simulations to compute a residue interaction map that identifies candidate residues involved in phase separation. Subsequent simulations with mutations of candidate residues resulted in disrupted condensation, supporting their involvement in phase separation. We performed in vitro and in vivo experiments to validate these predictions. To investigate the RNA-binding of PARCL, we added microRNA to the simulations and identified a short region of PARCL that consistently made contact with the miRNA in agreement with bioinformatics predictions and experiments. We discuss the implications of our findings in terms of model-guided engineering of biomolecular condensates.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.