{"title":"一类任意维交叉扩散系统的微扰全局解","authors":"L. Desvillettes , A. Moussa","doi":"10.1016/j.bulsci.2025.103686","DOIUrl":null,"url":null,"abstract":"<div><div>This article focuses on a large family of cross-diffusion systems of the form <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>U</mi><mo>−</mo><mi>Δ</mi><mi>A</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, in dimension <span><math><mi>d</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, and where <span><math><mi>U</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We show that under natural conditions on the nonlinearity <em>A</em>, those systems have a unique smooth (nonnegative for all components) solution when the initial data are small enough in a suitable norm.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"204 ","pages":"Article 103686"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perturbative global solutions of a large class of cross diffusion systems in any dimension\",\"authors\":\"L. Desvillettes , A. Moussa\",\"doi\":\"10.1016/j.bulsci.2025.103686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article focuses on a large family of cross-diffusion systems of the form <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>U</mi><mo>−</mo><mi>Δ</mi><mi>A</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, in dimension <span><math><mi>d</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, and where <span><math><mi>U</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We show that under natural conditions on the nonlinearity <em>A</em>, those systems have a unique smooth (nonnegative for all components) solution when the initial data are small enough in a suitable norm.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"204 \",\"pages\":\"Article 103686\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001125\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001125","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Perturbative global solutions of a large class of cross diffusion systems in any dimension
This article focuses on a large family of cross-diffusion systems of the form , in dimension , and where . We show that under natural conditions on the nonlinearity A, those systems have a unique smooth (nonnegative for all components) solution when the initial data are small enough in a suitable norm.