关于Zakharov-Kuznetsov方程和修正Zakharov-Kuznetsov方程空间解析半径的代数下界

IF 1.2 3区 数学 Q1 MATHEMATICS
Mikaela Baldasso, Mahendra Panthee
{"title":"关于Zakharov-Kuznetsov方程和修正Zakharov-Kuznetsov方程空间解析半径的代数下界","authors":"Mikaela Baldasso,&nbsp;Mahendra Panthee","doi":"10.1016/j.jmaa.2025.129802","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the initial value problem (IVP) for the 2D generalized Zakharov-Kuznetsov (ZK) equation<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd><mtd><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mi>R</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mi>Δ</mi><mo>=</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, <span><math><mi>μ</mi><mo>=</mo><mo>±</mo><mn>1</mn></math></span>, <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> and the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is real analytic in a complex strip in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and have radius of spatial analyticity <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. For both <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, considering a symmetrized version, we prove that there exists <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> such that the radius of spatial analyticity of the solution remains the same in the time interval <span><math><mo>[</mo><mo>−</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></math></span>. We also consider the evolution of the radius of spatial analyticity when the local solution extends globally in time. For the Zakharov-Kuznetsov equation (<span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>), we prove that, in both focusing (<span><math><mi>μ</mi><mo>=</mo><mn>1</mn></math></span>) and defocusing (<span><math><mi>μ</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>) cases, and for any <span><math><mi>T</mi><mo>&gt;</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the radius of analyticity cannot decay faster than <span><math><mi>c</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mo>(</mo><mn>4</mn><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></msup></math></span>, <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span>. For the modified Zakharov-Kuznetsov equation (<span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>)</mo></math></span> in the defocusing case (<span><math><mi>μ</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>), we prove that the radius of spatial analyticity cannot decay faster than <span><math><mi>c</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup></math></span>, <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span>, for any <span><math><mi>T</mi><mo>&gt;</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. These results on the algebraic lower bounds for the evolution of the radius of analyticity improve the ones obtained by Shan and Zhang in <span><span>[41]</span></span> and by Quian and Shan in <span><span>[33]</span></span> where the authors have obtained lower bounds involving exponential decay.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129802"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the algebraic lower bound for the radius of spatial analyticity for the Zakharov-Kuznetsov and modified Zakharov-Kuznetsov equations\",\"authors\":\"Mikaela Baldasso,&nbsp;Mahendra Panthee\",\"doi\":\"10.1016/j.jmaa.2025.129802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the initial value problem (IVP) for the 2D generalized Zakharov-Kuznetsov (ZK) equation<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd><mtd><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mi>R</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mi>Δ</mi><mo>=</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, <span><math><mi>μ</mi><mo>=</mo><mo>±</mo><mn>1</mn></math></span>, <span><math><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span> and the initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is real analytic in a complex strip in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and have radius of spatial analyticity <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. For both <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, considering a symmetrized version, we prove that there exists <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> such that the radius of spatial analyticity of the solution remains the same in the time interval <span><math><mo>[</mo><mo>−</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></math></span>. We also consider the evolution of the radius of spatial analyticity when the local solution extends globally in time. For the Zakharov-Kuznetsov equation (<span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>), we prove that, in both focusing (<span><math><mi>μ</mi><mo>=</mo><mn>1</mn></math></span>) and defocusing (<span><math><mi>μ</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>) cases, and for any <span><math><mi>T</mi><mo>&gt;</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the radius of analyticity cannot decay faster than <span><math><mi>c</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mo>(</mo><mn>4</mn><mo>+</mo><mi>ϵ</mi><mo>)</mo></mrow></msup></math></span>, <span><math><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span>. For the modified Zakharov-Kuznetsov equation (<span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>)</mo></math></span> in the defocusing case (<span><math><mi>μ</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>), we prove that the radius of spatial analyticity cannot decay faster than <span><math><mi>c</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup></math></span>, <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span>, for any <span><math><mi>T</mi><mo>&gt;</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. These results on the algebraic lower bounds for the evolution of the radius of analyticity improve the ones obtained by Shan and Zhang in <span><span>[41]</span></span> and by Quian and Shan in <span><span>[33]</span></span> where the authors have obtained lower bounds involving exponential decay.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 2\",\"pages\":\"Article 129802\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005839\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005839","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑二维广义Zakharov-Kuznetsov (ZK)方程{∂tu+∂xΔu+μ∂xuk+1=0,(x,y)∈R2,t∈R,u(x,y,0)=u0(x,y)的初值问题(IVP),其中Δ=∂x2+∂y2, μ=±1,k=1,2,初始数据u0是C2中复带中的实解析数据,其空间解析半径为σ0。对于k=1和k=2,考虑对称版本,我们证明了存在T0>;0,使得解的空间解析性半径在时间区间[−T0,T0]内保持不变。我们还考虑了当局部解在时间上扩展到全局时空间解析半径的演化。对于Zakharov-Kuznetsov方程(k=1),我们证明了在聚焦(μ=1)和散焦(μ=−1)情况下,对于任何T>;T0,解析半径的衰减速度不能快于cT−(4+ λ), ϵ>0, c>0。对于散焦情况(μ=−1)下的修正Zakharov-Kuznetsov方程(k=2),证明了对于任意T>;T0,空间解析性半径的衰减速度不能快于cT−43,c>0。这些关于解析半径演化的代数下界的结果改进了Shan和Zhang在[41]和Quian和Shan在[33]中所得到的关于指数衰减的下界的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the algebraic lower bound for the radius of spatial analyticity for the Zakharov-Kuznetsov and modified Zakharov-Kuznetsov equations
We consider the initial value problem (IVP) for the 2D generalized Zakharov-Kuznetsov (ZK) equation{tu+xΔu+μxuk+1=0,(x,y)R2,tR,u(x,y,0)=u0(x,y), where Δ=x2+y2, μ=±1, k=1,2 and the initial data u0 is real analytic in a complex strip in C2 and have radius of spatial analyticity σ0. For both k=1 and k=2, considering a symmetrized version, we prove that there exists T0>0 such that the radius of spatial analyticity of the solution remains the same in the time interval [T0,T0]. We also consider the evolution of the radius of spatial analyticity when the local solution extends globally in time. For the Zakharov-Kuznetsov equation (k=1), we prove that, in both focusing (μ=1) and defocusing (μ=1) cases, and for any T>T0, the radius of analyticity cannot decay faster than cT(4+ϵ), ϵ>0, c>0. For the modified Zakharov-Kuznetsov equation (k=2) in the defocusing case (μ=1), we prove that the radius of spatial analyticity cannot decay faster than cT43, c>0, for any T>T0. These results on the algebraic lower bounds for the evolution of the radius of analyticity improve the ones obtained by Shan and Zhang in [41] and by Quian and Shan in [33] where the authors have obtained lower bounds involving exponential decay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信