{"title":"分数阶非局部抛物算子的Kato-Ponce不等式","authors":"Meng Qu , Xinfeng Wu","doi":"10.1016/j.jde.2025.113572","DOIUrl":null,"url":null,"abstract":"<div><div>We establish Kato-Ponce inequality (or fractional Leibniz rule) for fractional nonlocal parabolic operators <span><math><msup><mrow><mo>(</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> of arbitrary order <span><math><mi>s</mi><mo>></mo><mn>0</mn></math></span> for a full range of Lebesgue indices including the endpoints, and determine the sharp range of <em>s</em>. We also prove a sharp Kato-Ponce commutator inequality for <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>. To achieve these results, we not only adapt the methods of Bourgain-Li <span><span>[11]</span></span>, Grafakos-Oh <span><span>[25]</span></span> and Oh-Wu <span><span>[50]</span></span> to the present parabolic setting, but build up sharp decay estimates for higher-order hyper-singular integrals of Nogin-Rubin <span><span>[48]</span></span> and Stinga-Torrea <span><span>[54]</span></span>, which are crucial for us to derive the sharp ranges of <em>s</em>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113572"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kato-Ponce inequality for fractional nonlocal parabolic operators\",\"authors\":\"Meng Qu , Xinfeng Wu\",\"doi\":\"10.1016/j.jde.2025.113572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish Kato-Ponce inequality (or fractional Leibniz rule) for fractional nonlocal parabolic operators <span><math><msup><mrow><mo>(</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> of arbitrary order <span><math><mi>s</mi><mo>></mo><mn>0</mn></math></span> for a full range of Lebesgue indices including the endpoints, and determine the sharp range of <em>s</em>. We also prove a sharp Kato-Ponce commutator inequality for <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mo>△</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>. To achieve these results, we not only adapt the methods of Bourgain-Li <span><span>[11]</span></span>, Grafakos-Oh <span><span>[25]</span></span> and Oh-Wu <span><span>[50]</span></span> to the present parabolic setting, but build up sharp decay estimates for higher-order hyper-singular integrals of Nogin-Rubin <span><span>[48]</span></span> and Stinga-Torrea <span><span>[54]</span></span>, which are crucial for us to derive the sharp ranges of <em>s</em>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"443 \",\"pages\":\"Article 113572\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005996\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005996","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Kato-Ponce inequality for fractional nonlocal parabolic operators
We establish Kato-Ponce inequality (or fractional Leibniz rule) for fractional nonlocal parabolic operators and of arbitrary order for a full range of Lebesgue indices including the endpoints, and determine the sharp range of s. We also prove a sharp Kato-Ponce commutator inequality for . To achieve these results, we not only adapt the methods of Bourgain-Li [11], Grafakos-Oh [25] and Oh-Wu [50] to the present parabolic setting, but build up sharp decay estimates for higher-order hyper-singular integrals of Nogin-Rubin [48] and Stinga-Torrea [54], which are crucial for us to derive the sharp ranges of s.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics