{"title":"半线性方程的正调和有界解","authors":"Wolfhard Hansen , Krzysztof Bogdan","doi":"10.1016/j.jde.2025.113544","DOIUrl":null,"url":null,"abstract":"<div><div>For open sets <em>U</em> in some space <em>X</em>, we are interested in positive solutions to semi-linear equations <span><math><mi>L</mi><mi>u</mi><mo>=</mo><mi>φ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>u</mi><mo>)</mo><mi>μ</mi></math></span> on <em>U</em>. Here <em>L</em> may be an elliptic or parabolic operator of second order (generator of a diffusion process) or an integro-differential operator (generator of a jump process), <em>μ</em> is a positive measure on <em>U</em> and <em>φ</em> is an arbitrary measurable real function on <span><math><mi>U</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> such that the functions <span><math><mi>t</mi><mo>↦</mo><mi>φ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>, <span><math><mi>x</mi><mo>∈</mo><mi>U</mi></math></span>, are continuous, increasing and vanish at <span><math><mi>t</mi><mo>=</mo><mn>0</mn></math></span>.</div><div>More precisely, given a measurable function <span><math><mi>h</mi><mo>≥</mo><mn>0</mn></math></span> on <em>X</em> which is <em>L</em>-harmonic on <em>U</em>, that is, continuous real on <em>U</em> with <span><math><mi>L</mi><mi>h</mi><mo>=</mo><mn>0</mn></math></span> on <em>U</em>, we give necessary and sufficient conditions for the existence of positive solutions <em>u</em> such that <span><math><mi>u</mi><mo>=</mo><mi>h</mi></math></span> on <span><math><mi>X</mi><mo>∖</mo><mi>U</mi></math></span> and <em>u</em> has the same “boundary behavior” as <em>h</em> on <em>U</em> (Problem 1) or, alternatively, <span><math><mi>u</mi><mo>≤</mo><mi>h</mi></math></span> on <em>U</em>, but <span><math><mi>u</mi><mo>≢</mo><mn>0</mn></math></span> on <em>U</em> (Problem 2).</div><div>We show that these problems are equivalent to problems of the existence of positive solutions to certain integral equations <span><math><mi>u</mi><mo>+</mo><mi>K</mi><mi>φ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>g</mi></math></span> on <em>U</em>, <em>K</em> being a potential kernel. We solve them in the general setting of balayage spaces <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>W</mi><mo>)</mo></math></span> which, in probabilistic terms, corresponds to the setting of transient Hunt processes with strong Feller resolvent.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113544"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive harmonically bounded solutions for semi-linear equations\",\"authors\":\"Wolfhard Hansen , Krzysztof Bogdan\",\"doi\":\"10.1016/j.jde.2025.113544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For open sets <em>U</em> in some space <em>X</em>, we are interested in positive solutions to semi-linear equations <span><math><mi>L</mi><mi>u</mi><mo>=</mo><mi>φ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>u</mi><mo>)</mo><mi>μ</mi></math></span> on <em>U</em>. Here <em>L</em> may be an elliptic or parabolic operator of second order (generator of a diffusion process) or an integro-differential operator (generator of a jump process), <em>μ</em> is a positive measure on <em>U</em> and <em>φ</em> is an arbitrary measurable real function on <span><math><mi>U</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> such that the functions <span><math><mi>t</mi><mo>↦</mo><mi>φ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>, <span><math><mi>x</mi><mo>∈</mo><mi>U</mi></math></span>, are continuous, increasing and vanish at <span><math><mi>t</mi><mo>=</mo><mn>0</mn></math></span>.</div><div>More precisely, given a measurable function <span><math><mi>h</mi><mo>≥</mo><mn>0</mn></math></span> on <em>X</em> which is <em>L</em>-harmonic on <em>U</em>, that is, continuous real on <em>U</em> with <span><math><mi>L</mi><mi>h</mi><mo>=</mo><mn>0</mn></math></span> on <em>U</em>, we give necessary and sufficient conditions for the existence of positive solutions <em>u</em> such that <span><math><mi>u</mi><mo>=</mo><mi>h</mi></math></span> on <span><math><mi>X</mi><mo>∖</mo><mi>U</mi></math></span> and <em>u</em> has the same “boundary behavior” as <em>h</em> on <em>U</em> (Problem 1) or, alternatively, <span><math><mi>u</mi><mo>≤</mo><mi>h</mi></math></span> on <em>U</em>, but <span><math><mi>u</mi><mo>≢</mo><mn>0</mn></math></span> on <em>U</em> (Problem 2).</div><div>We show that these problems are equivalent to problems of the existence of positive solutions to certain integral equations <span><math><mi>u</mi><mo>+</mo><mi>K</mi><mi>φ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>g</mi></math></span> on <em>U</em>, <em>K</em> being a potential kernel. We solve them in the general setting of balayage spaces <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>W</mi><mo>)</mo></math></span> which, in probabilistic terms, corresponds to the setting of transient Hunt processes with strong Feller resolvent.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"443 \",\"pages\":\"Article 113544\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005716\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005716","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Positive harmonically bounded solutions for semi-linear equations
For open sets U in some space X, we are interested in positive solutions to semi-linear equations on U. Here L may be an elliptic or parabolic operator of second order (generator of a diffusion process) or an integro-differential operator (generator of a jump process), μ is a positive measure on U and φ is an arbitrary measurable real function on such that the functions , , are continuous, increasing and vanish at .
More precisely, given a measurable function on X which is L-harmonic on U, that is, continuous real on U with on U, we give necessary and sufficient conditions for the existence of positive solutions u such that on and u has the same “boundary behavior” as h on U (Problem 1) or, alternatively, on U, but on U (Problem 2).
We show that these problems are equivalent to problems of the existence of positive solutions to certain integral equations on U, K being a potential kernel. We solve them in the general setting of balayage spaces which, in probabilistic terms, corresponds to the setting of transient Hunt processes with strong Feller resolvent.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics