Ning Qi , Pierre Pinson , Mads R. Almassalkhi , Yingrui Zhuang , Yifan Su , Feng Liu
{"title":"考虑战略容量保留和决策依赖不确定性的广义储能容量信用评价","authors":"Ning Qi , Pierre Pinson , Mads R. Almassalkhi , Yingrui Zhuang , Yifan Su , Feng Liu","doi":"10.1016/j.apenergy.2025.126310","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel capacity credit evaluation framework to accurately quantify the contribution of generalized energy storage (GES) to resource adequacy, considering both strategic capacity withholding and decision-dependent uncertainty (DDU). To this end, we establish a market-oriented risk-averse coordinated dispatch method to capture the cross-market reliable operation of GES. The proposed method is sequentially implemented along with the Monte Carlo simulation process, coordinating the pre-dispatched price arbitrage and capacity withholding in the energy market with adequacy-oriented re-dispatch during capacity market calls. In addition to decision-independent uncertainties in operational states and baseline behavior, we explicitly address the inherent DDU of GES (i.e., the uncertainty of available discharge capacity affected by the incentives and accumulated discomfort) during the re-dispatch stage using the proposed data-driven distributionally robust chance-constrained approach. Furthermore, a capacity credit metric called equivalent storage capacity substitution is introduced to quantify the equivalent deterministic storage capacity of uncertain GES. Simulations on the modified IEEE RTS-79 benchmark system with 20 years real-world data from Elia demonstrate that the proposed method yields accurate capacity credit and improved economic performance. We show that the capacity credit of GES increases with more strategic capacity withholding but decreases with more DDU levels. Key factors, such as capacity withholding and DDU structure impacting GES’s capacity credit are analyzed with insights into capacity market decision-making.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"397 ","pages":"Article 126310"},"PeriodicalIF":10.1000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacity credit evaluation of generalized energy storage considering strategic capacity withholding and decision-dependent uncertainty\",\"authors\":\"Ning Qi , Pierre Pinson , Mads R. Almassalkhi , Yingrui Zhuang , Yifan Su , Feng Liu\",\"doi\":\"10.1016/j.apenergy.2025.126310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a novel capacity credit evaluation framework to accurately quantify the contribution of generalized energy storage (GES) to resource adequacy, considering both strategic capacity withholding and decision-dependent uncertainty (DDU). To this end, we establish a market-oriented risk-averse coordinated dispatch method to capture the cross-market reliable operation of GES. The proposed method is sequentially implemented along with the Monte Carlo simulation process, coordinating the pre-dispatched price arbitrage and capacity withholding in the energy market with adequacy-oriented re-dispatch during capacity market calls. In addition to decision-independent uncertainties in operational states and baseline behavior, we explicitly address the inherent DDU of GES (i.e., the uncertainty of available discharge capacity affected by the incentives and accumulated discomfort) during the re-dispatch stage using the proposed data-driven distributionally robust chance-constrained approach. Furthermore, a capacity credit metric called equivalent storage capacity substitution is introduced to quantify the equivalent deterministic storage capacity of uncertain GES. Simulations on the modified IEEE RTS-79 benchmark system with 20 years real-world data from Elia demonstrate that the proposed method yields accurate capacity credit and improved economic performance. We show that the capacity credit of GES increases with more strategic capacity withholding but decreases with more DDU levels. Key factors, such as capacity withholding and DDU structure impacting GES’s capacity credit are analyzed with insights into capacity market decision-making.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"397 \",\"pages\":\"Article 126310\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925010402\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925010402","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Capacity credit evaluation of generalized energy storage considering strategic capacity withholding and decision-dependent uncertainty
This paper proposes a novel capacity credit evaluation framework to accurately quantify the contribution of generalized energy storage (GES) to resource adequacy, considering both strategic capacity withholding and decision-dependent uncertainty (DDU). To this end, we establish a market-oriented risk-averse coordinated dispatch method to capture the cross-market reliable operation of GES. The proposed method is sequentially implemented along with the Monte Carlo simulation process, coordinating the pre-dispatched price arbitrage and capacity withholding in the energy market with adequacy-oriented re-dispatch during capacity market calls. In addition to decision-independent uncertainties in operational states and baseline behavior, we explicitly address the inherent DDU of GES (i.e., the uncertainty of available discharge capacity affected by the incentives and accumulated discomfort) during the re-dispatch stage using the proposed data-driven distributionally robust chance-constrained approach. Furthermore, a capacity credit metric called equivalent storage capacity substitution is introduced to quantify the equivalent deterministic storage capacity of uncertain GES. Simulations on the modified IEEE RTS-79 benchmark system with 20 years real-world data from Elia demonstrate that the proposed method yields accurate capacity credit and improved economic performance. We show that the capacity credit of GES increases with more strategic capacity withholding but decreases with more DDU levels. Key factors, such as capacity withholding and DDU structure impacting GES’s capacity credit are analyzed with insights into capacity market decision-making.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.