在粘土空心砌块和水泥层中加入纳米封装PCM以提高建筑能源效率:数值方法

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Raouf Hassan , Ali B.M. Ali , Omar Al-Khatib , Ibrahim Mahariq
{"title":"在粘土空心砌块和水泥层中加入纳米封装PCM以提高建筑能源效率:数值方法","authors":"Raouf Hassan ,&nbsp;Ali B.M. Ali ,&nbsp;Omar Al-Khatib ,&nbsp;Ibrahim Mahariq","doi":"10.1016/j.csite.2025.106526","DOIUrl":null,"url":null,"abstract":"<div><div>The growing global demand for building energy highlights the need for advanced materials that enhance thermal performance and reduce greenhouse gas emissions. This study explores the integration of NEPCM into clay hollow blocks and an external cement layer to improve the energy efficiency of building envelopes. Unlike prior studies that rely on simplified thermodynamic models, this research employs a detailed numerical approach based on modified PDEs and effective property models that account for the latent heat behavior of the NEPCM core. Results indicate that increasing φ from 0 % to 10 % delays T<sub>si</sub> peaks by up to 0.8 h, maintains it between 23.3 °C and 26.6 °C, and reduces q<sub>si</sub> by approximately 13 %. Furthermore, P<sub>d</sub> exhibits a parabolic response to ΔT<sub>s</sub>, achieving a maximum reduction of 16 % at ΔT<sub>s</sub> = 20 °C with φ = 10 %. These findings underscore the potential of NEPCM-integrated building materials to support sustainable and thermally adaptive building design.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"73 ","pages":"Article 106526"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporation of nano-encapsulated PCM in clay hollow blocks and cement layer for improving energy efficiency in buildings: A numerical approach\",\"authors\":\"Raouf Hassan ,&nbsp;Ali B.M. Ali ,&nbsp;Omar Al-Khatib ,&nbsp;Ibrahim Mahariq\",\"doi\":\"10.1016/j.csite.2025.106526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing global demand for building energy highlights the need for advanced materials that enhance thermal performance and reduce greenhouse gas emissions. This study explores the integration of NEPCM into clay hollow blocks and an external cement layer to improve the energy efficiency of building envelopes. Unlike prior studies that rely on simplified thermodynamic models, this research employs a detailed numerical approach based on modified PDEs and effective property models that account for the latent heat behavior of the NEPCM core. Results indicate that increasing φ from 0 % to 10 % delays T<sub>si</sub> peaks by up to 0.8 h, maintains it between 23.3 °C and 26.6 °C, and reduces q<sub>si</sub> by approximately 13 %. Furthermore, P<sub>d</sub> exhibits a parabolic response to ΔT<sub>s</sub>, achieving a maximum reduction of 16 % at ΔT<sub>s</sub> = 20 °C with φ = 10 %. These findings underscore the potential of NEPCM-integrated building materials to support sustainable and thermally adaptive building design.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"73 \",\"pages\":\"Article 106526\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25007865\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25007865","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

全球对建筑能源日益增长的需求凸显了对先进材料的需求,这些材料可以提高热性能并减少温室气体排放。本研究探讨了NEPCM与粘土空心砌块和外部水泥层的整合,以提高建筑围护结构的能源效率。与以往依赖于简化热力学模型的研究不同,本研究采用了基于修正偏微分方程和有效性质模型的详细数值方法,以解释NEPCM堆芯的潜热行为。结果表明,φ从0%增加到10%可使Tsi峰延迟0.8 h,保持在23.3°C和26.6°C之间,并使qsi降低约13%。此外,Pd对ΔTs呈抛物线型响应,在ΔTs = 20°C, φ = 10%时,最大还原率为16%。这些发现强调了nepcm集成建筑材料在支持可持续和热适应性建筑设计方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporation of nano-encapsulated PCM in clay hollow blocks and cement layer for improving energy efficiency in buildings: A numerical approach
The growing global demand for building energy highlights the need for advanced materials that enhance thermal performance and reduce greenhouse gas emissions. This study explores the integration of NEPCM into clay hollow blocks and an external cement layer to improve the energy efficiency of building envelopes. Unlike prior studies that rely on simplified thermodynamic models, this research employs a detailed numerical approach based on modified PDEs and effective property models that account for the latent heat behavior of the NEPCM core. Results indicate that increasing φ from 0 % to 10 % delays Tsi peaks by up to 0.8 h, maintains it between 23.3 °C and 26.6 °C, and reduces qsi by approximately 13 %. Furthermore, Pd exhibits a parabolic response to ΔTs, achieving a maximum reduction of 16 % at ΔTs = 20 °C with φ = 10 %. These findings underscore the potential of NEPCM-integrated building materials to support sustainable and thermally adaptive building design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信