Md. Moshiur Rahman , Salvador Hernandez , Rakan Mohammad Radwan Albatayneh
{"title":"评估COVID-19对固定物体乘用车碰撞中驾驶员损伤严重程度的影响:来自时间和部分约束建模分析的见解","authors":"Md. Moshiur Rahman , Salvador Hernandez , Rakan Mohammad Radwan Albatayneh","doi":"10.1016/j.amar.2025.100397","DOIUrl":null,"url":null,"abstract":"<div><div>The COVID-19 pandemic reshaped the global transportation sector, including in the U.S., creating an unprecedented shift in traffic patterns. Despite a reduction in vehicle miles traveled (VMT), crash severity, particularly fatalities, increased significantly. Among all crash types, fixed-object collisions have consistently posed a critical safety concern due to their disproportionately high fatality rates, a trend further exacerbated during the pandemic. This study examines the impact of COVID-19 on driver injury severity in fixed-object passenger car crashes in Oregon. The authors estimated separate unconstrained models of driver injury severity in fixed-object passenger car crashes across three distinct time periods: before pandemic (March 2019–February 2020), during pandemic (March 2020–February 2021), and after pandemic (March 2021–February 2022), as well as a partially constrained model utilizing a random parameters multinomial logit model that incorporates heterogeneity in both means and variances of the random parameters. The analysis utilized 22,522 crash records for the state of Oregon obtained from the Oregon Department of Transportation. Likelihood ratio tests were performed to assess the temporal instability of model parameter estimates throughout the three time periods and to compare the partially constrained and unconstrained models. The findings indicated notable temporal variations in the determinants of injury severity, encompassing driver attributes, crash circumstances, roadway characteristics, and environmental elements. While alcohol consumption, improper driving, and collisions with trees consistently influenced injury severity across all periods, factors such as gender, airbag deployment, speeding, seasonal variations, and road surface conditions exhibited changing effects. Out-of-sample predictions indicate that severe injuries in fixed-object crashes were consistently underestimated, highlighting growing concerns about increasing crash severity, particularly in the post-pandemic period.</div></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"47 ","pages":"Article 100397"},"PeriodicalIF":12.5000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the impact of COVID-19 on driver injury severities in fixed-object passenger car crashes: Insights from temporal and partially constrained modeling analysis\",\"authors\":\"Md. Moshiur Rahman , Salvador Hernandez , Rakan Mohammad Radwan Albatayneh\",\"doi\":\"10.1016/j.amar.2025.100397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The COVID-19 pandemic reshaped the global transportation sector, including in the U.S., creating an unprecedented shift in traffic patterns. Despite a reduction in vehicle miles traveled (VMT), crash severity, particularly fatalities, increased significantly. Among all crash types, fixed-object collisions have consistently posed a critical safety concern due to their disproportionately high fatality rates, a trend further exacerbated during the pandemic. This study examines the impact of COVID-19 on driver injury severity in fixed-object passenger car crashes in Oregon. The authors estimated separate unconstrained models of driver injury severity in fixed-object passenger car crashes across three distinct time periods: before pandemic (March 2019–February 2020), during pandemic (March 2020–February 2021), and after pandemic (March 2021–February 2022), as well as a partially constrained model utilizing a random parameters multinomial logit model that incorporates heterogeneity in both means and variances of the random parameters. The analysis utilized 22,522 crash records for the state of Oregon obtained from the Oregon Department of Transportation. Likelihood ratio tests were performed to assess the temporal instability of model parameter estimates throughout the three time periods and to compare the partially constrained and unconstrained models. The findings indicated notable temporal variations in the determinants of injury severity, encompassing driver attributes, crash circumstances, roadway characteristics, and environmental elements. While alcohol consumption, improper driving, and collisions with trees consistently influenced injury severity across all periods, factors such as gender, airbag deployment, speeding, seasonal variations, and road surface conditions exhibited changing effects. Out-of-sample predictions indicate that severe injuries in fixed-object crashes were consistently underestimated, highlighting growing concerns about increasing crash severity, particularly in the post-pandemic period.</div></div>\",\"PeriodicalId\":47520,\"journal\":{\"name\":\"Analytic Methods in Accident Research\",\"volume\":\"47 \",\"pages\":\"Article 100397\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic Methods in Accident Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213665725000284\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665725000284","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Assessing the impact of COVID-19 on driver injury severities in fixed-object passenger car crashes: Insights from temporal and partially constrained modeling analysis
The COVID-19 pandemic reshaped the global transportation sector, including in the U.S., creating an unprecedented shift in traffic patterns. Despite a reduction in vehicle miles traveled (VMT), crash severity, particularly fatalities, increased significantly. Among all crash types, fixed-object collisions have consistently posed a critical safety concern due to their disproportionately high fatality rates, a trend further exacerbated during the pandemic. This study examines the impact of COVID-19 on driver injury severity in fixed-object passenger car crashes in Oregon. The authors estimated separate unconstrained models of driver injury severity in fixed-object passenger car crashes across three distinct time periods: before pandemic (March 2019–February 2020), during pandemic (March 2020–February 2021), and after pandemic (March 2021–February 2022), as well as a partially constrained model utilizing a random parameters multinomial logit model that incorporates heterogeneity in both means and variances of the random parameters. The analysis utilized 22,522 crash records for the state of Oregon obtained from the Oregon Department of Transportation. Likelihood ratio tests were performed to assess the temporal instability of model parameter estimates throughout the three time periods and to compare the partially constrained and unconstrained models. The findings indicated notable temporal variations in the determinants of injury severity, encompassing driver attributes, crash circumstances, roadway characteristics, and environmental elements. While alcohol consumption, improper driving, and collisions with trees consistently influenced injury severity across all periods, factors such as gender, airbag deployment, speeding, seasonal variations, and road surface conditions exhibited changing effects. Out-of-sample predictions indicate that severe injuries in fixed-object crashes were consistently underestimated, highlighting growing concerns about increasing crash severity, particularly in the post-pandemic period.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.