Pengfei Meng, Yue Yin, Lei Wang, Jingke Guo, Zerui Li, Kai Zhou, Guangya Zhu, Yefei Xu
{"title":"基于多场耦合模拟的高阻介质影响下ZnO压敏电阻失效机理分析","authors":"Pengfei Meng, Yue Yin, Lei Wang, Jingke Guo, Zerui Li, Kai Zhou, Guangya Zhu, Yefei Xu","doi":"10.1049/hve2.70034","DOIUrl":null,"url":null,"abstract":"This study focuses on the distribution of high-resistance media (pores and spinels) within <span data-altimg=\"/cms/asset/5bd5d10b-9b01-4f3a-9176-607d4c438cb2/hve270034-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"139\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/hve270034-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"ZnO\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:23977264:media:hve270034:hve270034-math-0001\" display=\"inline\" location=\"graphic/hve270034-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-role=\"unknown\" data-semantic-speech=\"ZnO\" data-semantic-type=\"text\">ZnO</mtext></mrow>$\\text{ZnO}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> varistors and explores the mechanical and electrical failure mechanisms of varistors under different pulse actions. Micro-CT technology revealed that the proportion of high-resistance media in the edge area is much higher than in the internal area. Simulation results indicated that a high porosity significantly increased temperature rise and thermal stress concentration, while a high spinel proportion exacerbated current concentration but had a relatively minor impact on the distribution of temperature rise and thermal stress. Under an electric field of 1000–1250 V/mm, pores transition from an insulating state to a conductive state, especially in the edge area, leading to concentrated temperature rise and thermal stress. Once the thermal stress exceeded the critical value of the mechanical strength of the pores, cracking failure occurred. The high spinel proportion in the edge area further intensified current concentration under high electric fields, working together with the conductivity of the pores to produce a significant local temperature rise, melting grain structure, and ultimately leading to puncture failure. This study provides a new perspective for understanding the failure mechanism of <span data-altimg=\"/cms/asset/9372901b-e4fd-4dfe-b121-3c2ccf1e318e/hve270034-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"140\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/hve270034-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"ZnO\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:23977264:media:hve270034:hve270034-math-0002\" display=\"inline\" location=\"graphic/hve270034-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-role=\"unknown\" data-semantic-speech=\"ZnO\" data-semantic-type=\"text\">ZnO</mtext></mrow>$\\text{ZnO}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> varistors and lays a theoretical foundation for the development of varistor materials with high energy absorption capacity.","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"636 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the failure mechanism of ZnO varistors influenced by high-resistance media based on multi-field coupling simulation\",\"authors\":\"Pengfei Meng, Yue Yin, Lei Wang, Jingke Guo, Zerui Li, Kai Zhou, Guangya Zhu, Yefei Xu\",\"doi\":\"10.1049/hve2.70034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the distribution of high-resistance media (pores and spinels) within <span data-altimg=\\\"/cms/asset/5bd5d10b-9b01-4f3a-9176-607d4c438cb2/hve270034-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"139\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/hve270034-math-0001.png\\\"><mjx-semantics><mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"ZnO\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:23977264:media:hve270034:hve270034-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/hve270034-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"ZnO\\\" data-semantic-type=\\\"text\\\">ZnO</mtext></mrow>$\\\\text{ZnO}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> varistors and explores the mechanical and electrical failure mechanisms of varistors under different pulse actions. Micro-CT technology revealed that the proportion of high-resistance media in the edge area is much higher than in the internal area. Simulation results indicated that a high porosity significantly increased temperature rise and thermal stress concentration, while a high spinel proportion exacerbated current concentration but had a relatively minor impact on the distribution of temperature rise and thermal stress. Under an electric field of 1000–1250 V/mm, pores transition from an insulating state to a conductive state, especially in the edge area, leading to concentrated temperature rise and thermal stress. Once the thermal stress exceeded the critical value of the mechanical strength of the pores, cracking failure occurred. The high spinel proportion in the edge area further intensified current concentration under high electric fields, working together with the conductivity of the pores to produce a significant local temperature rise, melting grain structure, and ultimately leading to puncture failure. This study provides a new perspective for understanding the failure mechanism of <span data-altimg=\\\"/cms/asset/9372901b-e4fd-4dfe-b121-3c2ccf1e318e/hve270034-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"140\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/hve270034-math-0002.png\\\"><mjx-semantics><mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"ZnO\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:23977264:media:hve270034:hve270034-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/hve270034-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"ZnO\\\" data-semantic-type=\\\"text\\\">ZnO</mtext></mrow>$\\\\text{ZnO}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> varistors and lays a theoretical foundation for the development of varistor materials with high energy absorption capacity.\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":\"636 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1049/hve2.70034\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/hve2.70034","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analysis of the failure mechanism of ZnO varistors influenced by high-resistance media based on multi-field coupling simulation
This study focuses on the distribution of high-resistance media (pores and spinels) within varistors and explores the mechanical and electrical failure mechanisms of varistors under different pulse actions. Micro-CT technology revealed that the proportion of high-resistance media in the edge area is much higher than in the internal area. Simulation results indicated that a high porosity significantly increased temperature rise and thermal stress concentration, while a high spinel proportion exacerbated current concentration but had a relatively minor impact on the distribution of temperature rise and thermal stress. Under an electric field of 1000–1250 V/mm, pores transition from an insulating state to a conductive state, especially in the edge area, leading to concentrated temperature rise and thermal stress. Once the thermal stress exceeded the critical value of the mechanical strength of the pores, cracking failure occurred. The high spinel proportion in the edge area further intensified current concentration under high electric fields, working together with the conductivity of the pores to produce a significant local temperature rise, melting grain structure, and ultimately leading to puncture failure. This study provides a new perspective for understanding the failure mechanism of varistors and lays a theoretical foundation for the development of varistor materials with high energy absorption capacity.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf