基于多场耦合模拟的高阻介质影响下ZnO压敏电阻失效机理分析

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2025-06-21 DOI:10.1049/hve2.70034
Pengfei Meng, Yue Yin, Lei Wang, Jingke Guo, Zerui Li, Kai Zhou, Guangya Zhu, Yefei Xu
{"title":"基于多场耦合模拟的高阻介质影响下ZnO压敏电阻失效机理分析","authors":"Pengfei Meng, Yue Yin, Lei Wang, Jingke Guo, Zerui Li, Kai Zhou, Guangya Zhu, Yefei Xu","doi":"10.1049/hve2.70034","DOIUrl":null,"url":null,"abstract":"This study focuses on the distribution of high-resistance media (pores and spinels) within <span data-altimg=\"/cms/asset/5bd5d10b-9b01-4f3a-9176-607d4c438cb2/hve270034-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"139\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/hve270034-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"ZnO\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:23977264:media:hve270034:hve270034-math-0001\" display=\"inline\" location=\"graphic/hve270034-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-role=\"unknown\" data-semantic-speech=\"ZnO\" data-semantic-type=\"text\">ZnO</mtext></mrow>$\\text{ZnO}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> varistors and explores the mechanical and electrical failure mechanisms of varistors under different pulse actions. Micro-CT technology revealed that the proportion of high-resistance media in the edge area is much higher than in the internal area. Simulation results indicated that a high porosity significantly increased temperature rise and thermal stress concentration, while a high spinel proportion exacerbated current concentration but had a relatively minor impact on the distribution of temperature rise and thermal stress. Under an electric field of 1000–1250 V/mm, pores transition from an insulating state to a conductive state, especially in the edge area, leading to concentrated temperature rise and thermal stress. Once the thermal stress exceeded the critical value of the mechanical strength of the pores, cracking failure occurred. The high spinel proportion in the edge area further intensified current concentration under high electric fields, working together with the conductivity of the pores to produce a significant local temperature rise, melting grain structure, and ultimately leading to puncture failure. This study provides a new perspective for understanding the failure mechanism of <span data-altimg=\"/cms/asset/9372901b-e4fd-4dfe-b121-3c2ccf1e318e/hve270034-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"140\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/hve270034-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"ZnO\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:23977264:media:hve270034:hve270034-math-0002\" display=\"inline\" location=\"graphic/hve270034-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-role=\"unknown\" data-semantic-speech=\"ZnO\" data-semantic-type=\"text\">ZnO</mtext></mrow>$\\text{ZnO}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> varistors and lays a theoretical foundation for the development of varistor materials with high energy absorption capacity.","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"636 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the failure mechanism of ZnO varistors influenced by high-resistance media based on multi-field coupling simulation\",\"authors\":\"Pengfei Meng, Yue Yin, Lei Wang, Jingke Guo, Zerui Li, Kai Zhou, Guangya Zhu, Yefei Xu\",\"doi\":\"10.1049/hve2.70034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the distribution of high-resistance media (pores and spinels) within <span data-altimg=\\\"/cms/asset/5bd5d10b-9b01-4f3a-9176-607d4c438cb2/hve270034-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"139\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/hve270034-math-0001.png\\\"><mjx-semantics><mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"ZnO\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:23977264:media:hve270034:hve270034-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/hve270034-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"ZnO\\\" data-semantic-type=\\\"text\\\">ZnO</mtext></mrow>$\\\\text{ZnO}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> varistors and explores the mechanical and electrical failure mechanisms of varistors under different pulse actions. Micro-CT technology revealed that the proportion of high-resistance media in the edge area is much higher than in the internal area. Simulation results indicated that a high porosity significantly increased temperature rise and thermal stress concentration, while a high spinel proportion exacerbated current concentration but had a relatively minor impact on the distribution of temperature rise and thermal stress. Under an electric field of 1000–1250 V/mm, pores transition from an insulating state to a conductive state, especially in the edge area, leading to concentrated temperature rise and thermal stress. Once the thermal stress exceeded the critical value of the mechanical strength of the pores, cracking failure occurred. The high spinel proportion in the edge area further intensified current concentration under high electric fields, working together with the conductivity of the pores to produce a significant local temperature rise, melting grain structure, and ultimately leading to puncture failure. This study provides a new perspective for understanding the failure mechanism of <span data-altimg=\\\"/cms/asset/9372901b-e4fd-4dfe-b121-3c2ccf1e318e/hve270034-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"140\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/hve270034-math-0002.png\\\"><mjx-semantics><mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"ZnO\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:23977264:media:hve270034:hve270034-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/hve270034-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"ZnO\\\" data-semantic-type=\\\"text\\\">ZnO</mtext></mrow>$\\\\text{ZnO}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> varistors and lays a theoretical foundation for the development of varistor materials with high energy absorption capacity.\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":\"636 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1049/hve2.70034\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/hve2.70034","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究重点研究了ZnO$\text{ZnO}$压敏电阻内部高阻介质(孔隙和尖晶石)的分布,探讨了不同脉冲作用下压敏电阻的机械和电气失效机制。Micro-CT技术显示,高阻介质在边缘区域的比例远高于内部区域。模拟结果表明,高孔隙度显著增加了温升和热应力集中,而高尖晶石比例加剧了电流集中,但对温升和热应力分布的影响相对较小。在1000 ~ 1250 V/mm的电场作用下,孔隙由绝缘状态转变为导电状态,特别是在边缘区域,导致温度上升和热应力集中。热应力一旦超过孔隙机械强度临界值,就会发生开裂破坏。边缘区域尖晶石比例高,进一步加剧了高电场作用下的电流集中,与孔隙的导电性共同作用,导致局部温度显著升高,使晶粒结构熔化,最终导致穿刺失败。本研究为理解ZnO$\text{ZnO}$压敏电阻的失效机理提供了新的视角,为开发具有高能量吸收能力的压敏电阻材料奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the failure mechanism of ZnO varistors influenced by high-resistance media based on multi-field coupling simulation
This study focuses on the distribution of high-resistance media (pores and spinels) within ZnO$\text{ZnO}$ varistors and explores the mechanical and electrical failure mechanisms of varistors under different pulse actions. Micro-CT technology revealed that the proportion of high-resistance media in the edge area is much higher than in the internal area. Simulation results indicated that a high porosity significantly increased temperature rise and thermal stress concentration, while a high spinel proportion exacerbated current concentration but had a relatively minor impact on the distribution of temperature rise and thermal stress. Under an electric field of 1000–1250 V/mm, pores transition from an insulating state to a conductive state, especially in the edge area, leading to concentrated temperature rise and thermal stress. Once the thermal stress exceeded the critical value of the mechanical strength of the pores, cracking failure occurred. The high spinel proportion in the edge area further intensified current concentration under high electric fields, working together with the conductivity of the pores to produce a significant local temperature rise, melting grain structure, and ultimately leading to puncture failure. This study provides a new perspective for understanding the failure mechanism of ZnO$\text{ZnO}$ varistors and lays a theoretical foundation for the development of varistor materials with high energy absorption capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信