通过持续解除表观遗传抑制,原位构建骨化微单元用于关键骨再生

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wu Yang , Tao Ding , Pengzhen Zhuang , Yu Chen , Yu Zhang , Zehao Chen , Minjie Fan , Tapani Viitala , Zhongmin Wang , Wenguo Cui , Hongbo Zhang
{"title":"通过持续解除表观遗传抑制,原位构建骨化微单元用于关键骨再生","authors":"Wu Yang ,&nbsp;Tao Ding ,&nbsp;Pengzhen Zhuang ,&nbsp;Yu Chen ,&nbsp;Yu Zhang ,&nbsp;Zehao Chen ,&nbsp;Minjie Fan ,&nbsp;Tapani Viitala ,&nbsp;Zhongmin Wang ,&nbsp;Wenguo Cui ,&nbsp;Hongbo Zhang","doi":"10.1016/j.jconrel.2025.113978","DOIUrl":null,"url":null,"abstract":"<div><div>Critical-sized bone defects present significant clinical challenges due to insufficient stem cell recruitment, epigenetic suppression of osteogenesis, and inadequate mineralization. Among the epigenetic suppression mechanisms, upregulated MEG3 specifically recruits the epigenetic regulator EZH2 to block the transcription of β-catenin, a core gene for bone regeneration. To regulate MEG3 <em>in vivo</em> effectively, we used microfluidics to develop <em>in situ</em> continuous MEG3-silencing ossification micro-units (MSOMs) that integrate “material–gene–biofactor” tri-coupling into a unified biomaterial system. The MSOMs are nano-micro particles composed of amorphous calcium phosphate nanoparticles loaded with siRNA (si@BCP) in GelMA microgels loaded with stromal cell-derived factor-1α (SDF-1α). The SDF-1α in the microgel layer is rapidly released to recruit BMSCs, while the siRNA in si@BCP has sustained release to silence MEG3 and restore β-catenin transcription continuously. Thus, the MSOMs provide a stable mineralization microenvironment for ossification center formation. <em>In vivo</em> observations revealed the formation of ossification centers around these micro-units, tripling new bone formation and achieving efficient bone regeneration. By addressing the key limitations of traditional therapies, MSOMs offer a clinically viable solution that integrates stem cell recruitment, epigenetic regulation, and biomaterial-based mineralization, thus providing a highly efficient approach for critical bone defect repair.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"385 ","pages":"Article 113978"},"PeriodicalIF":10.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ construction of ossification micro-units for critical bone regeneration via sustained lifting of epigenetic suppression\",\"authors\":\"Wu Yang ,&nbsp;Tao Ding ,&nbsp;Pengzhen Zhuang ,&nbsp;Yu Chen ,&nbsp;Yu Zhang ,&nbsp;Zehao Chen ,&nbsp;Minjie Fan ,&nbsp;Tapani Viitala ,&nbsp;Zhongmin Wang ,&nbsp;Wenguo Cui ,&nbsp;Hongbo Zhang\",\"doi\":\"10.1016/j.jconrel.2025.113978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Critical-sized bone defects present significant clinical challenges due to insufficient stem cell recruitment, epigenetic suppression of osteogenesis, and inadequate mineralization. Among the epigenetic suppression mechanisms, upregulated MEG3 specifically recruits the epigenetic regulator EZH2 to block the transcription of β-catenin, a core gene for bone regeneration. To regulate MEG3 <em>in vivo</em> effectively, we used microfluidics to develop <em>in situ</em> continuous MEG3-silencing ossification micro-units (MSOMs) that integrate “material–gene–biofactor” tri-coupling into a unified biomaterial system. The MSOMs are nano-micro particles composed of amorphous calcium phosphate nanoparticles loaded with siRNA (si@BCP) in GelMA microgels loaded with stromal cell-derived factor-1α (SDF-1α). The SDF-1α in the microgel layer is rapidly released to recruit BMSCs, while the siRNA in si@BCP has sustained release to silence MEG3 and restore β-catenin transcription continuously. Thus, the MSOMs provide a stable mineralization microenvironment for ossification center formation. <em>In vivo</em> observations revealed the formation of ossification centers around these micro-units, tripling new bone formation and achieving efficient bone regeneration. By addressing the key limitations of traditional therapies, MSOMs offer a clinically viable solution that integrates stem cell recruitment, epigenetic regulation, and biomaterial-based mineralization, thus providing a highly efficient approach for critical bone defect repair.</div></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":\"385 \",\"pages\":\"Article 113978\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168365925005991\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925005991","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于干细胞募集不足、表观遗传抑制成骨和矿化不足,临界大小的骨缺损呈现出重大的临床挑战。在表观遗传抑制机制中,上调的MEG3特异性地招募表观遗传调节因子EZH2来阻断β-catenin的转录,而β-catenin是骨再生的核心基因。为了在体内有效调节MEG3,我们利用微流体技术开发了原位连续MEG3沉默骨化微单元(MSOMs),该微单元将“材料-基因-生物因子”三偶联整合到一个统一的生物材料系统中。MSOMs是由装载siRNA (si@BCP)的无定形磷酸钙纳米颗粒组成的纳米微颗粒,在装载基质细胞衍生因子-1α (SDF-1α)的GelMA微凝胶中。微凝胶层中的SDF-1α快速释放募集骨髓间充质干细胞,si@BCP中的siRNA持续释放沉默MEG3,持续恢复β-catenin转录。因此,MSOMs为骨化中心的形成提供了稳定的成矿微环境。体内观察显示,在这些微单元周围形成了骨化中心,使新骨形成增加了三倍,并实现了有效的骨再生。通过解决传统疗法的主要局限性,MSOMs提供了一种临床可行的解决方案,该解决方案集成了干细胞募集、表观遗传调控和生物材料矿化,从而为关键骨缺损修复提供了一种高效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In situ construction of ossification micro-units for critical bone regeneration via sustained lifting of epigenetic suppression

In situ construction of ossification micro-units for critical bone regeneration via sustained lifting of epigenetic suppression

In situ construction of ossification micro-units for critical bone regeneration via sustained lifting of epigenetic suppression
Critical-sized bone defects present significant clinical challenges due to insufficient stem cell recruitment, epigenetic suppression of osteogenesis, and inadequate mineralization. Among the epigenetic suppression mechanisms, upregulated MEG3 specifically recruits the epigenetic regulator EZH2 to block the transcription of β-catenin, a core gene for bone regeneration. To regulate MEG3 in vivo effectively, we used microfluidics to develop in situ continuous MEG3-silencing ossification micro-units (MSOMs) that integrate “material–gene–biofactor” tri-coupling into a unified biomaterial system. The MSOMs are nano-micro particles composed of amorphous calcium phosphate nanoparticles loaded with siRNA (si@BCP) in GelMA microgels loaded with stromal cell-derived factor-1α (SDF-1α). The SDF-1α in the microgel layer is rapidly released to recruit BMSCs, while the siRNA in si@BCP has sustained release to silence MEG3 and restore β-catenin transcription continuously. Thus, the MSOMs provide a stable mineralization microenvironment for ossification center formation. In vivo observations revealed the formation of ossification centers around these micro-units, tripling new bone formation and achieving efficient bone regeneration. By addressing the key limitations of traditional therapies, MSOMs offer a clinically viable solution that integrates stem cell recruitment, epigenetic regulation, and biomaterial-based mineralization, thus providing a highly efficient approach for critical bone defect repair.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信