Deogkyu Choi, Seungho Bang, Juchan Lee, Chaewon Lee, jieun Jo, Young Joo Yu, Chan Kwon, Hayoung Ko, Ki Kang Kim, Jin Ho Ahn, Eun Kyu Kim, Mun Seok Jeong
{"title":"局部电荷积累对金属- mos2触点光电流动力学的影响","authors":"Deogkyu Choi, Seungho Bang, Juchan Lee, Chaewon Lee, jieun Jo, Young Joo Yu, Chan Kwon, Hayoung Ko, Ki Kang Kim, Jin Ho Ahn, Eun Kyu Kim, Mun Seok Jeong","doi":"10.1039/d4nr04610b","DOIUrl":null,"url":null,"abstract":"Monolayer molybdenum disulfide (1L-MoS<small><sub>2</sub></small>) has attracted a lot of attention due to its excellent electrical and optoelectronic properties. However, the challenge remains the instability of the metal-semiconductor junction, which greatly affects the performance of the drain/source contacts. Despite the promising potential offered by 1L-MoS<small><sub>2</sub></small> as an ultrathin two-dimensional semiconductor, its optoelectronic performance is often compromised by contact issues at the metal-semiconductor junctions. Especially, the localized charge accumulation (LCA) can cause barrier height fluctuation, which affects carrier transport and activated trap states. In this study, we use photocurrent mapping to investigate photocurrent reduction and its optoelectronic properties depending on device position. The results show a significant reduction in the photoresponsivity and photodetectivity of the LCA region compared to the channel. Moreover, the decay time of the LCA region was approximately twice as long compared to the channel, indicating the presence of deep traps leading to slow switching. This investigation highlights the significant role of photo-generated LCA region affecting metal-semiconductor junctions in degrading optoelectronics performance. It also provides a critical understanding necessary for engineering next-generation optoelectronics based on 2D semiconductors.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"17 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of Localized Charge Accumulation on Photocurrent Dynamics in Metal-MoS2 Contacts\",\"authors\":\"Deogkyu Choi, Seungho Bang, Juchan Lee, Chaewon Lee, jieun Jo, Young Joo Yu, Chan Kwon, Hayoung Ko, Ki Kang Kim, Jin Ho Ahn, Eun Kyu Kim, Mun Seok Jeong\",\"doi\":\"10.1039/d4nr04610b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monolayer molybdenum disulfide (1L-MoS<small><sub>2</sub></small>) has attracted a lot of attention due to its excellent electrical and optoelectronic properties. However, the challenge remains the instability of the metal-semiconductor junction, which greatly affects the performance of the drain/source contacts. Despite the promising potential offered by 1L-MoS<small><sub>2</sub></small> as an ultrathin two-dimensional semiconductor, its optoelectronic performance is often compromised by contact issues at the metal-semiconductor junctions. Especially, the localized charge accumulation (LCA) can cause barrier height fluctuation, which affects carrier transport and activated trap states. In this study, we use photocurrent mapping to investigate photocurrent reduction and its optoelectronic properties depending on device position. The results show a significant reduction in the photoresponsivity and photodetectivity of the LCA region compared to the channel. Moreover, the decay time of the LCA region was approximately twice as long compared to the channel, indicating the presence of deep traps leading to slow switching. This investigation highlights the significant role of photo-generated LCA region affecting metal-semiconductor junctions in degrading optoelectronics performance. It also provides a critical understanding necessary for engineering next-generation optoelectronics based on 2D semiconductors.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4nr04610b\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04610b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Impacts of Localized Charge Accumulation on Photocurrent Dynamics in Metal-MoS2 Contacts
Monolayer molybdenum disulfide (1L-MoS2) has attracted a lot of attention due to its excellent electrical and optoelectronic properties. However, the challenge remains the instability of the metal-semiconductor junction, which greatly affects the performance of the drain/source contacts. Despite the promising potential offered by 1L-MoS2 as an ultrathin two-dimensional semiconductor, its optoelectronic performance is often compromised by contact issues at the metal-semiconductor junctions. Especially, the localized charge accumulation (LCA) can cause barrier height fluctuation, which affects carrier transport and activated trap states. In this study, we use photocurrent mapping to investigate photocurrent reduction and its optoelectronic properties depending on device position. The results show a significant reduction in the photoresponsivity and photodetectivity of the LCA region compared to the channel. Moreover, the decay time of the LCA region was approximately twice as long compared to the channel, indicating the presence of deep traps leading to slow switching. This investigation highlights the significant role of photo-generated LCA region affecting metal-semiconductor junctions in degrading optoelectronics performance. It also provides a critical understanding necessary for engineering next-generation optoelectronics based on 2D semiconductors.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.