{"title":"双氰胺驱动的高性能ACI二维钙钛矿太阳能电池n值分布裁剪和界面动力学。","authors":"Ge Chen,Yunlong Gan,Shiheng Wang,Xueru Liu,Jing Yang,Sihui Peng,Yingjie Zhao,Pengwei Li,Asliddin Komilov,Yanlin Song,Yiqiang Zhang","doi":"10.1007/s40820-025-01817-x","DOIUrl":null,"url":null,"abstract":"Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies (> 26%) yet face stability challenges. Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects. Herein, we introduce dicyanodiamide (DCD) to simultaneously address these dual limitations in GA(MA)nPbnI3n+1 perovskites. The guanidine group in DCD passivates undercoordinated Pb2+ and MA+ vacancies at the perovskite/TiO2 interface, while cyano groups eliminate oxygen vacancies in TiO2 via Ti4+-CN coordination, reducing interfacial trap density by 73% with respect to the control sample. In addition, DCD regulates crystallization kinetics, suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases, which benefit for carrier transport. This dual-functional modification enhances charge transport and stabilizes energy-level alignment. The optimized devices achieve a record power conversion efficiency of 21.54% (vs. 19.05% control) and retain 94% initial efficiency after 1200 h, outperforming unmodified counterparts (84% retention). Combining defect passivation with phase homogenization, this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites, providing a universal framework for interface engineering in high-performance optoelectronics.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"40 1","pages":"305"},"PeriodicalIF":36.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dicyandiamide-Driven Tailoring of the n-Value Distribution and Interface Dynamics for High-Performance ACI 2D Perovskite Solar Cells.\",\"authors\":\"Ge Chen,Yunlong Gan,Shiheng Wang,Xueru Liu,Jing Yang,Sihui Peng,Yingjie Zhao,Pengwei Li,Asliddin Komilov,Yanlin Song,Yiqiang Zhang\",\"doi\":\"10.1007/s40820-025-01817-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies (> 26%) yet face stability challenges. Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects. Herein, we introduce dicyanodiamide (DCD) to simultaneously address these dual limitations in GA(MA)nPbnI3n+1 perovskites. The guanidine group in DCD passivates undercoordinated Pb2+ and MA+ vacancies at the perovskite/TiO2 interface, while cyano groups eliminate oxygen vacancies in TiO2 via Ti4+-CN coordination, reducing interfacial trap density by 73% with respect to the control sample. In addition, DCD regulates crystallization kinetics, suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases, which benefit for carrier transport. This dual-functional modification enhances charge transport and stabilizes energy-level alignment. The optimized devices achieve a record power conversion efficiency of 21.54% (vs. 19.05% control) and retain 94% initial efficiency after 1200 h, outperforming unmodified counterparts (84% retention). Combining defect passivation with phase homogenization, this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites, providing a universal framework for interface engineering in high-performance optoelectronics.\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"40 1\",\"pages\":\"305\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40820-025-01817-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01817-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Dicyandiamide-Driven Tailoring of the n-Value Distribution and Interface Dynamics for High-Performance ACI 2D Perovskite Solar Cells.
Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies (> 26%) yet face stability challenges. Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects. Herein, we introduce dicyanodiamide (DCD) to simultaneously address these dual limitations in GA(MA)nPbnI3n+1 perovskites. The guanidine group in DCD passivates undercoordinated Pb2+ and MA+ vacancies at the perovskite/TiO2 interface, while cyano groups eliminate oxygen vacancies in TiO2 via Ti4+-CN coordination, reducing interfacial trap density by 73% with respect to the control sample. In addition, DCD regulates crystallization kinetics, suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases, which benefit for carrier transport. This dual-functional modification enhances charge transport and stabilizes energy-level alignment. The optimized devices achieve a record power conversion efficiency of 21.54% (vs. 19.05% control) and retain 94% initial efficiency after 1200 h, outperforming unmodified counterparts (84% retention). Combining defect passivation with phase homogenization, this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites, providing a universal framework for interface engineering in high-performance optoelectronics.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.