双氰胺驱动的高性能ACI二维钙钛矿太阳能电池n值分布裁剪和界面动力学。

IF 36.3 1区 材料科学 Q1 Engineering
Ge Chen,Yunlong Gan,Shiheng Wang,Xueru Liu,Jing Yang,Sihui Peng,Yingjie Zhao,Pengwei Li,Asliddin Komilov,Yanlin Song,Yiqiang Zhang
{"title":"双氰胺驱动的高性能ACI二维钙钛矿太阳能电池n值分布裁剪和界面动力学。","authors":"Ge Chen,Yunlong Gan,Shiheng Wang,Xueru Liu,Jing Yang,Sihui Peng,Yingjie Zhao,Pengwei Li,Asliddin Komilov,Yanlin Song,Yiqiang Zhang","doi":"10.1007/s40820-025-01817-x","DOIUrl":null,"url":null,"abstract":"Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies (> 26%) yet face stability challenges. Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects. Herein, we introduce dicyanodiamide (DCD) to simultaneously address these dual limitations in GA(MA)nPbnI3n+1 perovskites. The guanidine group in DCD passivates undercoordinated Pb2+ and MA+ vacancies at the perovskite/TiO2 interface, while cyano groups eliminate oxygen vacancies in TiO2 via Ti4+-CN coordination, reducing interfacial trap density by 73% with respect to the control sample. In addition, DCD regulates crystallization kinetics, suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases, which benefit for carrier transport. This dual-functional modification enhances charge transport and stabilizes energy-level alignment. The optimized devices achieve a record power conversion efficiency of 21.54% (vs. 19.05% control) and retain 94% initial efficiency after 1200 h, outperforming unmodified counterparts (84% retention). Combining defect passivation with phase homogenization, this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites, providing a universal framework for interface engineering in high-performance optoelectronics.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"40 1","pages":"305"},"PeriodicalIF":36.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dicyandiamide-Driven Tailoring of the n-Value Distribution and Interface Dynamics for High-Performance ACI 2D Perovskite Solar Cells.\",\"authors\":\"Ge Chen,Yunlong Gan,Shiheng Wang,Xueru Liu,Jing Yang,Sihui Peng,Yingjie Zhao,Pengwei Li,Asliddin Komilov,Yanlin Song,Yiqiang Zhang\",\"doi\":\"10.1007/s40820-025-01817-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies (> 26%) yet face stability challenges. Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects. Herein, we introduce dicyanodiamide (DCD) to simultaneously address these dual limitations in GA(MA)nPbnI3n+1 perovskites. The guanidine group in DCD passivates undercoordinated Pb2+ and MA+ vacancies at the perovskite/TiO2 interface, while cyano groups eliminate oxygen vacancies in TiO2 via Ti4+-CN coordination, reducing interfacial trap density by 73% with respect to the control sample. In addition, DCD regulates crystallization kinetics, suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases, which benefit for carrier transport. This dual-functional modification enhances charge transport and stabilizes energy-level alignment. The optimized devices achieve a record power conversion efficiency of 21.54% (vs. 19.05% control) and retain 94% initial efficiency after 1200 h, outperforming unmodified counterparts (84% retention). Combining defect passivation with phase homogenization, this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites, providing a universal framework for interface engineering in high-performance optoelectronics.\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"40 1\",\"pages\":\"305\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40820-025-01817-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01817-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

有机-无机混合钙钛矿太阳能电池取得了显著的效率(> 26%),但面临稳定性挑战。准二维交替阳离子-层间钙钛矿通过疏水间隔阳离子增强了稳定性,但存在垂直相偏析和埋藏界面缺陷。在此,我们引入双氰二胺(DCD)来同时解决GA(MA)nPbnI3n+1钙钛矿的双重限制。DCD中的胍基钝化了钙钛矿/TiO2界面上欠配位的Pb2+和MA+空位,而氰基通过Ti4+-CN配位消除了TiO2中的氧空位,与对照样品相比,界面陷阱密度降低了73%。此外,DCD调节结晶动力学,抑制低n相聚集,促进高n相垂直排列,有利于载流子输运。这种双重功能的修饰增强了电荷输运并稳定了能级排列。优化后的器件达到创纪录的21.54%的功率转换效率(对照组为19.05%),在1200小时后保持94%的初始效率,优于未修改的同类器件(保持84%)。结合缺陷钝化和相均质化,本研究建立了一种分子桥策略来解耦低维钙钛矿的稳定性和效率权衡,为高性能光电界面工程提供了一个通用框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dicyandiamide-Driven Tailoring of the n-Value Distribution and Interface Dynamics for High-Performance ACI 2D Perovskite Solar Cells.
Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies (> 26%) yet face stability challenges. Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects. Herein, we introduce dicyanodiamide (DCD) to simultaneously address these dual limitations in GA(MA)nPbnI3n+1 perovskites. The guanidine group in DCD passivates undercoordinated Pb2+ and MA+ vacancies at the perovskite/TiO2 interface, while cyano groups eliminate oxygen vacancies in TiO2 via Ti4+-CN coordination, reducing interfacial trap density by 73% with respect to the control sample. In addition, DCD regulates crystallization kinetics, suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases, which benefit for carrier transport. This dual-functional modification enhances charge transport and stabilizes energy-level alignment. The optimized devices achieve a record power conversion efficiency of 21.54% (vs. 19.05% control) and retain 94% initial efficiency after 1200 h, outperforming unmodified counterparts (84% retention). Combining defect passivation with phase homogenization, this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites, providing a universal framework for interface engineering in high-performance optoelectronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信