3d打印硼氮掺杂碳电极通过MPECVD可持续废水处理。

IF 36.3 1区 材料科学 Q1 Engineering
Iwona Kaczmarzyk,Malgorzata Szopińska,Patryk Sokołowski,Simona Sabbatini,Gabriel Strugala,Jacek Ryl,Gianni Barucca,Per Falås,Robert Bogdanowicz,Mattia Pierpaoli
{"title":"3d打印硼氮掺杂碳电极通过MPECVD可持续废水处理。","authors":"Iwona Kaczmarzyk,Malgorzata Szopińska,Patryk Sokołowski,Simona Sabbatini,Gabriel Strugala,Jacek Ryl,Gianni Barucca,Per Falås,Robert Bogdanowicz,Mattia Pierpaoli","doi":"10.1007/s40820-025-01827-9","DOIUrl":null,"url":null,"abstract":"This study proposes a novel and sustainable method for fabricating 3D-printed carbon-based electrodes for electrochemical wastewater treatment. We prepared B,N-doped carbon electrodes with hierarchical porosity and a significantly enhanced surface area-to-volume ratio (up to 180%) compared to non-optimized analogues using a synergistic combination of 3D printing, phase inversion, and microwave plasma-enhanced chemical vapor deposition. This process allows the metal-free growth of vertically aligned carbon nanostructures directly onto polymer-derived substrates, resulting in a 20-fold increase in the electrochemically active surface area. Computational fluid dynamics simulations were used to improve mass transport and reduce pressure drop. Electrochemical characterization demonstrated that the optimized electrodes performed significantly better, achieving 4.7-, 4-, and 6.5-fold increases in the degradation rates of atenolol, metoprolol, and propranolol, respectively, during electrochemical oxidation. These results highlight the efficacy of the integrated fabrication and simulation approach in producing high-performance electrodes for sustainable wastewater treatment applications.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"101 1","pages":"311"},"PeriodicalIF":36.3000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-Printed Boron-Nitrogen Doped Carbon Electrodes for Sustainable Wastewater Treatment via MPECVD.\",\"authors\":\"Iwona Kaczmarzyk,Malgorzata Szopińska,Patryk Sokołowski,Simona Sabbatini,Gabriel Strugala,Jacek Ryl,Gianni Barucca,Per Falås,Robert Bogdanowicz,Mattia Pierpaoli\",\"doi\":\"10.1007/s40820-025-01827-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a novel and sustainable method for fabricating 3D-printed carbon-based electrodes for electrochemical wastewater treatment. We prepared B,N-doped carbon electrodes with hierarchical porosity and a significantly enhanced surface area-to-volume ratio (up to 180%) compared to non-optimized analogues using a synergistic combination of 3D printing, phase inversion, and microwave plasma-enhanced chemical vapor deposition. This process allows the metal-free growth of vertically aligned carbon nanostructures directly onto polymer-derived substrates, resulting in a 20-fold increase in the electrochemically active surface area. Computational fluid dynamics simulations were used to improve mass transport and reduce pressure drop. Electrochemical characterization demonstrated that the optimized electrodes performed significantly better, achieving 4.7-, 4-, and 6.5-fold increases in the degradation rates of atenolol, metoprolol, and propranolol, respectively, during electrochemical oxidation. These results highlight the efficacy of the integrated fabrication and simulation approach in producing high-performance electrodes for sustainable wastewater treatment applications.\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"101 1\",\"pages\":\"311\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40820-025-01827-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01827-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新的、可持续的方法来制造用于电化学废水处理的3d打印碳基电极。与未优化的类似物相比,我们使用3D打印、相转化和微波等离子体增强化学气相沉积的协同组合制备了具有分层孔隙度和显着提高的表面积体积比(高达180%)的B, n掺杂碳电极。该工艺允许垂直排列的碳纳米结构直接在聚合物基板上无金属生长,导致电化学活性表面积增加20倍。采用计算流体力学模拟来改善质量传递和减小压降。电化学表征表明,优化后的电极性能明显更好,在电化学氧化过程中,阿替洛尔、美托洛尔和心得安的降解率分别提高了4.7倍、4倍和6.5倍。这些结果突出了集成制造和模拟方法在生产用于可持续废水处理应用的高性能电极方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D-Printed Boron-Nitrogen Doped Carbon Electrodes for Sustainable Wastewater Treatment via MPECVD.
This study proposes a novel and sustainable method for fabricating 3D-printed carbon-based electrodes for electrochemical wastewater treatment. We prepared B,N-doped carbon electrodes with hierarchical porosity and a significantly enhanced surface area-to-volume ratio (up to 180%) compared to non-optimized analogues using a synergistic combination of 3D printing, phase inversion, and microwave plasma-enhanced chemical vapor deposition. This process allows the metal-free growth of vertically aligned carbon nanostructures directly onto polymer-derived substrates, resulting in a 20-fold increase in the electrochemically active surface area. Computational fluid dynamics simulations were used to improve mass transport and reduce pressure drop. Electrochemical characterization demonstrated that the optimized electrodes performed significantly better, achieving 4.7-, 4-, and 6.5-fold increases in the degradation rates of atenolol, metoprolol, and propranolol, respectively, during electrochemical oxidation. These results highlight the efficacy of the integrated fabrication and simulation approach in producing high-performance electrodes for sustainable wastewater treatment applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信