{"title":"具有协同活性氧清除和巨噬细胞极化诱导的骨免疫调节的多功能水凝胶促进骨再生。","authors":"Qingcheng Song, Yiran Zhang, Hongzhi Hu, Xin Xing, Jianhua Wu, Yanbin Zhu*, Wei Chen* and Yingze Zhang*, ","doi":"10.1021/acsami.5c08737","DOIUrl":null,"url":null,"abstract":"<p >The regeneration of bone defects remains an enormous clinical challenge owing to locally abnormal reactive oxygen species (ROS) levels and the inability to timely regulate the osteoimmune microenvironment. Herein, polydopamine (PDA) modified black phosphorus nanosheets (BP) with small palladium nanoparticles (Pd NPs) immobilized in situ were prepared (BP@PDA-Pd) and incorporated into a gelatin methacryloyl/methacrylated poly-γ-glutamate hybrid hydrogel to fabricate a composite photocurable therapeutic platform (BPPP/GP) with excellent antioxidant and osteo-immunomodulatory activity for enhanced high-quality endogenous bone regeneration. The BPPP with optical absorbance in the near-infrared (NIR) region endows the composite hydrogel with excellent NIR-responsive characteristics, resulting in mild photothermal-enhanced antioxidant enzyme-like activity to scavenge ROS and the induction of endogenous cell recruitment. More importantly, the BPPP/GP photocurable hydrogel with mild photothermal stimulation could achieve spatiotemporal regulation of the osteoimmune microenvironment by inducing macrophage polarization toward the anti-inflammatory phenotype (M2), with the secretion of pro-osteogenic and pro-angiogenic growth factors. In vivo experiments confirmed that the NIR-stimulation based BPPP/GP system could effectively eliminate ROS, alleviate local inflammation, and regulate macrophage polarization to create a favorable osteoimmune microenvironment for osteogenic differentiation and revascularization. Together, the development of this multifunctional hydrogel with the capability to reshape the damaged microenvironment provides a promising strategy for accelerating bone regeneration.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 27","pages":"38985–39001"},"PeriodicalIF":8.2000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsami.5c08737","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Hydrogel with Synergistic Reactive Oxygen Species Scavenging and Macrophage Polarization-Induced Osteo-immunomodulation for Enhanced Bone Regeneration\",\"authors\":\"Qingcheng Song, Yiran Zhang, Hongzhi Hu, Xin Xing, Jianhua Wu, Yanbin Zhu*, Wei Chen* and Yingze Zhang*, \",\"doi\":\"10.1021/acsami.5c08737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The regeneration of bone defects remains an enormous clinical challenge owing to locally abnormal reactive oxygen species (ROS) levels and the inability to timely regulate the osteoimmune microenvironment. Herein, polydopamine (PDA) modified black phosphorus nanosheets (BP) with small palladium nanoparticles (Pd NPs) immobilized in situ were prepared (BP@PDA-Pd) and incorporated into a gelatin methacryloyl/methacrylated poly-γ-glutamate hybrid hydrogel to fabricate a composite photocurable therapeutic platform (BPPP/GP) with excellent antioxidant and osteo-immunomodulatory activity for enhanced high-quality endogenous bone regeneration. The BPPP with optical absorbance in the near-infrared (NIR) region endows the composite hydrogel with excellent NIR-responsive characteristics, resulting in mild photothermal-enhanced antioxidant enzyme-like activity to scavenge ROS and the induction of endogenous cell recruitment. More importantly, the BPPP/GP photocurable hydrogel with mild photothermal stimulation could achieve spatiotemporal regulation of the osteoimmune microenvironment by inducing macrophage polarization toward the anti-inflammatory phenotype (M2), with the secretion of pro-osteogenic and pro-angiogenic growth factors. In vivo experiments confirmed that the NIR-stimulation based BPPP/GP system could effectively eliminate ROS, alleviate local inflammation, and regulate macrophage polarization to create a favorable osteoimmune microenvironment for osteogenic differentiation and revascularization. Together, the development of this multifunctional hydrogel with the capability to reshape the damaged microenvironment provides a promising strategy for accelerating bone regeneration.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 27\",\"pages\":\"38985–39001\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsami.5c08737\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c08737\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c08737","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multifunctional Hydrogel with Synergistic Reactive Oxygen Species Scavenging and Macrophage Polarization-Induced Osteo-immunomodulation for Enhanced Bone Regeneration
The regeneration of bone defects remains an enormous clinical challenge owing to locally abnormal reactive oxygen species (ROS) levels and the inability to timely regulate the osteoimmune microenvironment. Herein, polydopamine (PDA) modified black phosphorus nanosheets (BP) with small palladium nanoparticles (Pd NPs) immobilized in situ were prepared (BP@PDA-Pd) and incorporated into a gelatin methacryloyl/methacrylated poly-γ-glutamate hybrid hydrogel to fabricate a composite photocurable therapeutic platform (BPPP/GP) with excellent antioxidant and osteo-immunomodulatory activity for enhanced high-quality endogenous bone regeneration. The BPPP with optical absorbance in the near-infrared (NIR) region endows the composite hydrogel with excellent NIR-responsive characteristics, resulting in mild photothermal-enhanced antioxidant enzyme-like activity to scavenge ROS and the induction of endogenous cell recruitment. More importantly, the BPPP/GP photocurable hydrogel with mild photothermal stimulation could achieve spatiotemporal regulation of the osteoimmune microenvironment by inducing macrophage polarization toward the anti-inflammatory phenotype (M2), with the secretion of pro-osteogenic and pro-angiogenic growth factors. In vivo experiments confirmed that the NIR-stimulation based BPPP/GP system could effectively eliminate ROS, alleviate local inflammation, and regulate macrophage polarization to create a favorable osteoimmune microenvironment for osteogenic differentiation and revascularization. Together, the development of this multifunctional hydrogel with the capability to reshape the damaged microenvironment provides a promising strategy for accelerating bone regeneration.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.